1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/*
* This file is part of Freecell Solver. It is subject to the license terms in
* the COPYING.txt file found in the top-level directory of this distribution
* and at http://fc-solve.shlomifish.org/docs/distro/COPYING.html . No part of
* Freecell Solver, including this file, may be copied, modified, propagated,
* or distributed except according to the terms contained in the COPYING file.
*
* Copyright (c) 2012 Shlomi Fish
*/
/*
* dbm_cache.h - contains the implementation of the DBM solver cache routines.
*/
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include "meta_alloc.h"
#include "freecell-solver/fcs_enums.h"
#include "freecell-solver/fcs_dllexport.h"
#include "dbm_common.h"
#include "delta_states.h"
#include "dbm_calc_derived_iface.h"
#include "dbm_lru_cache.h"
static int fc_solve_compare_lru_cache_keys(const void *const void_a,
const void *const void_b, void *context GCC_UNUSED)
{
#define GET_PARAM(p) ((((const fcs_cache_key_info *)(p))->key))
return memcmp(
&(GET_PARAM(void_a)), &(GET_PARAM(void_b)), sizeof(GET_PARAM(void_a)));
#undef GET_PARAM
}
static inline void cache_destroy_key(fcs_cache_key_info *cache_key)
{
for (; cache_key; cache_key = RECYCLE_BIN_NEXT(cache_key))
{
free(cache_key->moves_to_key);
cache_key->moves_to_key = NULL;
}
}
static inline void cache_destroy(fcs_lru_cache *cache)
{
cache_destroy_key(cache->recycle_bin);
cache_destroy_key(cache->lowest_pri);
fc_solve_kaz_tree_destroy(cache->kaz_tree);
fc_solve_compact_allocator_finish(
&(cache->states_values_to_keys_allocator));
}
static inline void cache_init(fcs_lru_cache *const cache,
const long max_num_elements_in_cache, meta_allocator *const meta_alloc)
{
#if (FCS_RCS_CACHE_STORAGE == FCS_RCS_CACHE_STORAGE_JUDY)
cache->states_values_to_keys_map = ((Pvoid_t)NULL);
#elif (FCS_RCS_CACHE_STORAGE == FCS_RCS_CACHE_STORAGE_KAZ_TREE)
cache->tree_recycle_bin = NULL;
cache->kaz_tree = fc_solve_kaz_tree_create(fc_solve_compare_lru_cache_keys,
NULL, meta_alloc, &(cache->tree_recycle_bin));
#else
#error Unknown FCS_RCS_CACHE_STORAGE
#endif
fc_solve_compact_allocator_init(
&(cache->states_values_to_keys_allocator), meta_alloc);
cache->lowest_pri = NULL;
cache->highest_pri = NULL;
cache->recycle_bin = NULL;
cache->count_elements_in_cache = 0;
cache->max_num_elements_in_cache = max_num_elements_in_cache;
}
static inline bool cache_does_key_exist(
fcs_lru_cache *const cache, fcs_cache_key *const key)
{
const fcs_cache_key_info to_check = {.key = *key};
const dict_key_t existing_key =
fc_solve_kaz_tree_lookup_value(cache->kaz_tree, &to_check);
if (!existing_key)
{
return FALSE;
}
else
{
/* First - promote this key to the top of the cache. */
fcs_cache_key_info *const existing = (fcs_cache_key_info *)existing_key;
if (existing->higher_pri)
{
existing->higher_pri->lower_pri = existing->lower_pri;
if (existing->lower_pri)
{
existing->lower_pri->higher_pri = existing->higher_pri;
}
else
{
cache->lowest_pri = existing->higher_pri;
/* Bug fix: keep the chain intact. */
existing->higher_pri->lower_pri = NULL;
}
cache->highest_pri->higher_pri = existing;
existing->lower_pri = cache->highest_pri;
cache->highest_pri = existing;
existing->higher_pri = NULL;
}
return TRUE;
}
}
static inline fcs_cache_key_info *cache_insert(fcs_lru_cache *cache,
const fcs_cache_key *key, const fcs_fcc_move *moves_to_parent,
const fcs_fcc_move final_move)
{
fcs_cache_key_info *cache_key;
var_AUTO(kaz_tree, cache->kaz_tree);
if (cache->count_elements_in_cache >= cache->max_num_elements_in_cache)
{
fc_solve_kaz_tree_delete_by_value(
kaz_tree, (cache_key = cache->lowest_pri));
cache->lowest_pri = cache->lowest_pri->higher_pri;
cache->lowest_pri->lower_pri = NULL;
}
else
{
cache_key = (fcs_cache_key_info *)fcs_compact_alloc_ptr(
&(cache->states_values_to_keys_allocator), sizeof(*cache_key));
cache_key->moves_to_key = NULL;
++cache->count_elements_in_cache;
}
cache_key->key = *key;
if (moves_to_parent)
{
fcs_fcc_move *moves;
const_AUTO(len, strlen((const char *)moves_to_parent));
cache_key->moves_to_key = moves =
SREALLOC(cache_key->moves_to_key, len + 1 + 1);
memcpy(moves, moves_to_parent, len);
moves[len] = final_move;
moves[len + 1] = '\0';
}
else if (final_move)
{
cache_key->moves_to_key = SREALLOC(cache_key->moves_to_key, 2);
cache_key->moves_to_key[0] = final_move;
cache_key->moves_to_key[1] = '\0';
}
else
{
free(cache_key->moves_to_key);
cache_key->moves_to_key = NULL;
}
if (cache->highest_pri)
{
cache_key->lower_pri = cache->highest_pri;
cache_key->higher_pri = NULL;
cache->highest_pri->higher_pri = cache_key;
cache->highest_pri = cache_key;
}
else
{
cache->highest_pri = cache->lowest_pri = cache_key;
cache_key->higher_pri = cache_key->lower_pri = NULL;
}
fc_solve_kaz_tree_alloc_insert(kaz_tree, cache_key);
return cache_key;
}
#ifdef __cplusplus
}
#endif
|