File: NS-BackwardStep.edp

package info (click to toggle)
freefem%2B%2B 3.47%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 132,088 kB
  • ctags: 19,726
  • sloc: cpp: 138,951; ansic: 22,605; sh: 4,951; makefile: 2,935; fortran: 1,147; perl: 768; awk: 282; php: 182
file content (171 lines) | stat: -rw-r--r-- 5,103 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*
  Incompressible Navier Stokes 
    with Taylor-Hood Finite element
    No linearity : Newton method 
    continuation on Reynols Number
    Mesh adaptation 
    
    Test case Laminar Flow over a Backward Facing Step  Gamm Workshop
    
     K.Morgan, J.Périaux and F.Thomasset, Analysis of laminar flow over a backward facing step, Vol9 of Notes on Num. Fluid Mech., Vieweg, 1984. 
    
*/

// FFCS regression test value
real regtest;

real[int] Reynold=[50,150,300,400,500];
real[int] HH=[1.5,1]; 
real[int,int] reattachP=[ [ 2.8, 2 ], [ 5.16, 3.7 ]] ;  // reattachP[irey,cas]  
int nerr=0; 
bool adapt=1; // do adap or not 
bool dplot=0; // debug plot 
for(int cas=0;cas<2;++cas)
{
real h=HH[cas]-0.5,H=HH[cas],l=3,L=22;
int[int] ll=[3,2,5,1];
// label 1 in
//       2  out 
//       3  down wall
//       4   step 
//       5   up wall 
func zoom=[[2.5,0],[10,H]];
mesh Th=square(22,6,[x*22,y*H],label=ll);
Th=trunc(Th, (x>l) | (y >0.5),label=4); 
func meshsize= 2*max(0.05,max(max(x-l,0.0)/19./5.,max(l-x,0.0)/3./8. ));
func uin=(H-y)*(y-0.5)/square((H-0.5)/2.);
Th=adaptmesh(Th,meshsize,IsMetric=1);
Th=adaptmesh(Th,meshsize,IsMetric=1);
plot(Th,wait=0);
fespace Xh(Th,P2);
fespace Mh(Th,P1);
fespace XXMh(Th,[P2,P2,P1]);
XXMh [u1,u2,p];
XXMh [v1,v2,q]; 

macro div(u1,u2) (dx(u1)+dy(u2))//
macro grad(u1,u2) [dx(u1),dy(u2)]//
macro ugrad(u1,u2,v) (u1*dx(v)+u2*dy(v)) //
macro Ugrad(u1,u2,v1,v2) [ugrad(u1,u2,v1),ugrad(u1,u2,v2)]//

solve Stokes ([u1,u2,p],[v1,v2,q],solver=UMFPACK) =
    int2d(Th)( ( dx(u1)*dx(v1) + dy(u1)*dy(v1)
            +  dx(u2)*dx(v2) + dy(u2)*dy(v2) )
            + p*q*(0.000001) 
            - p*div(v1,v2)-q*div(u1,u2)
           )
  + on(1,u1=uin,u2=0) 
  + on(3,4,5,u1=0,u2=0);

 Xh uu1=u1,uu2=u2;  
plot(coef=0.2,cmm="Stokes [u1,u2] et p  ",p,[uu1,uu2],wait=0);
plot(coef=0.2,cmm="Stokes  p  ",p,wait=0);
Mh psi,phi;


solve streamlines(psi,phi) = 
      int2d(Th)( dx(psi)*dx(phi) + dy(psi)*dy(phi))
   +  int2d(Th)( -phi*(dy(u1)-dx(u2)))
   +  on(3,4,psi=0)+ on(5,psi=-2./3.*(H-0.5))
   ;
real[int] psiviso(31);
{int k=0;
for(int i=-20;i<0;i++)
 psiviso[k++] = i*2./3.*(H-0.5)/20;
for(int i=0;i<=10;i++)
 psiviso[k++] = i*2./3.*(H-0.5)/100/(H*H*H);
}

plot(psi,wait=0,viso=psiviso);
int i=0;
real  nu=1./100.;
real dt=0.1;
real alpha=1/dt;





XXMh [up1,up2,pp];
varf   vDNS ([u1,u2,p],[v1,v2,q]) =
    int2d(Th)(
            
            + nu * ( dx(u1)*dx(v1) + dy(u1)*dy(v1)
            +  dx(u2)*dx(v2) + dy(u2)*dy(v2) )
            + p*q*(0.000001) 
            + p*dx(v1)+ p*dy(v2)
            + dx(u1)*q+ dy(u2)*q
            + Ugrad(u1,u2,up1,up2)'*[v1,v2]
            + Ugrad(up1,up2,u1,u2)'*[v1,v2]
           )
  + on(1,3,4,5,u1=0,u2=0) 
;


varf   vNS ([u1,u2,p],[v1,v2,q]) =
    int2d(Th)(
          
            + nu * ( dx(up1)*dx(v1) + dy(up1)*dy(v1)
            +  dx(up2)*dx(v2) + dy(up2)*dy(v2) )
            + pp*q*(0.000001) 
            + pp*dx(v1)+ pp*dy(v2)
            + dx(up1)*q+ dy(up2)*q
            + Ugrad(up1,up2,up1,up2)'*[v1,v2]//'
	      )
  + on(1,3,4,5,u1=0,u2=0) 
  ;

for(int krey=0;krey<Reynold.n;++krey)
  { 
    real re=Reynold[krey];
    real lerr=0.01;
    
    for(int step=0;step<(adapt?2:1) ;step++)
      {
     if(adapt)
     {
	  Th=adaptmesh(Th,[u1,u2],p,abserror=1,cutoff=1e-5,err=lerr,nbvx=100000,hmin=0.01);
	  if(dplot) plot(Th,wait=0,bb=zoom);
     }
	[u1,u2,p]=[u1,u2,p];
	[up1,up2,pp]=[up1,up2,pp];
	
	for (i=0;i<=20;i++)
	  {
	    nu = (H-h)/re;
	    up1[]=u1[];
	    real[int] b = vNS(0,XXMh);
	    matrix Ans=vDNS(XXMh,XXMh);
	    set(Ans,solver=UMFPACK);
	    real[int] w = Ans^-1*b;
	    u1[] -= w;
	    cout << " iter = "<< i << "  " << w.l2 <<  " rey = " << re << endl;
	    if(w.l2<1e-6) break; 
	    // uu1=u1;uu2=u2;
	    if(dplot) plot(coef=0.2,cmm="H="+H+" re "+re+ " [u1,u2] et p  ",p,[uu1,uu2],bb=zoom);  
	    
	  } ;
      }
    uu1=u1;uu2=u2;
    streamlines;
    real rp1=1./(H-h)*int1d(Th,3)( real( (x>=l & x < (l+0.5)) | (x>(l+0.4)) & (x<10)& (dy(psi) >= 1e-5)) ) ;
    real rp2=1./(H-h)*int1d(Th,3)( real( (x>=l & x < (l+0.5)) | (x>(l+0.4)) & (x<10)& (dy(psi) >= -1e-5)) ) ;
    real rp3=1./(H-h)*int1d(Th,3)( real( (x>=l & x < (l+0.5)) | (x>(l+0.4)) & (x<10)& (dy(u1)<=0)       ) ) ;
    cout << " Reattach point " << rp2 << " " << rp2 << " " << rp3 << endl;
    real rp = (rp1+rp2)/2;
    real rppaper =  krey < 2 ? reattachP(krey,cas) : rp; 
    real err= abs(rppaper - rp)/rp;
    if( err>0.5 ) nerr++;//  
    cout << "\n\n\n";
    cout << "H= " << H << " Re " << re << " Reattach point " << rp << " paper=" << rppaper << " err "<< err 
         << "  psi max = " << psi[].max <<endl; 
    cout << "\n\n\n";
    plot(coef=0.2,cmm="H="+H+", rey="+re+" [u1,u2] et p  ",p,[uu1,uu2],wait=0,nbiso=20,bb=zoom);//,ps="Upstep-"+H+"-"+re
    plot(coef=0.2,cmm="H="+H+", rey="+re+" [u1,u2] et p  ",p,[uu1,uu2],wait=0,nbiso=20,bb=zoom);//,ps="Upstep-"+H+"-"+re+".ps");  
    plot(coef=0.2,cmm="H="+H+", rey="+re+" [u1,u2] et p  ",psi,bb=zoom,viso=psiviso);//,ps="psi-step-"+H+"-"+re+".ps");  

    // FFCS regression test value
    regtest=uu1[]'*uu1[];//'
     }
}
assert(nerr==0);