File: Newton.edp

package info (click to toggle)
freefem%2B%2B 3.47%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 132,088 kB
  • ctags: 19,726
  • sloc: cpp: 138,951; ansic: 22,605; sh: 4,951; makefile: 2,935; fortran: 1,147; perl: 768; awk: 282; php: 182
file content (70 lines) | stat: -rw-r--r-- 2,401 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// FFCS: making a numerical value visible for regression tests
real regtest;

{ // ---  a real non linear test ---
mesh Th=square(10,10);  // mesh definition of $\Omega$
Th = adaptmesh(Th,0.05,IsMetric=1,splitpbedge=1);

//plot(Th,wait=1);
//Th = adaptmesh(Th,0.1,IsMetric=1,splitpbedge=1);
plot(Th,wait=0);
fespace Vh(Th,P1);      // finite element space
fespace Ph(Th,P1dc);      // make optimization 

Vh b=1;  // to defined b 
// $ J(u) = 1/2 \int_\Omega f(|\nabla u|^2) - \int\Omega  u b $
// $ f(x) = a*x + x-ln(1+x), \quad f'(x) = a+\frac{x}{1+x}, \quad f''(x) =  \frac{1}{(1+x)^2}$
real a=0.001;
func real f(real u) { return u*a+u-log(1+u); }
func real df(real u) { return a+u/(1+u);}
func real ddf(real u) { return 1/((1+u)*(1+u));}

Vh u=0; //  the current value of the solution
Ph alpha; // to store  $ (|\nabla u|^2)$
Ph dfalpha; // to store  $f' (|\nabla u|^2)$
Ph ddfalpha ; //to store = $2 f''( |\nabla u|^2) $  optimisation

int iter=0;


//   methode of  Newton Ralphson to solve dJ(u)=0;
//    $$ u^{n+1} = u^n - (\frac{\partial dJ}{\partial u_i})^{-1}*dJ(u^n) $$ 
//   ---------------------------------------------
  // the variationnal form of evaluate  dJ 
  // --------------------------------------
  //  dJ =  f'()*( dx(u)*dx(vh) + dy(u)*dy(vh) 
  varf vdJ(uh,vh) =  int2d(Th)( dfalpha*( dx(u)*dx(vh) + dy(u)*dy(vh) ) - b*vh)
  + on(1,2,3,4, uh=0);
  // the variationnal form of evaluate  ddJ   
  // hJ(uh,vh) =  f'()*( dx(uh)*dx(vh) + dy(uh)*dy(vh)
  //            + f''()( dx(u)*dx(uh) + dy(u)*dy(uh) ) * (dx(u)*dx(vh) + dy(u)*dy(vh)) 
  varf vhJ(uh,vh) = int2d(Th)( dfalpha*( dx(uh)*dx(vh) + dy(uh)*dy(vh) )
   +  ddfalpha*( dx(u)*dx(vh) + dy(u)*dy(vh)  )*( dx(u)*dx(uh) + dy(u)*dy(uh) ) )
   + on(1,2,3,4, uh=0);
   
 // the newton algorithm  
  Vh v,w; 
  u=0;
  for (int i=0;i<100;i++)
   {
    alpha = dx(u)*dx(u) + dy(u)*dy(u);// optimization
    dfalpha = df( alpha ) ; // optimization
    ddfalpha = 2*ddf(alpha ) ; // optimization
    v[]= vdJ(0,Vh);
    real res= v[]'*v[]; //'
    cout << i <<  " residu^2 = " <<  res  << endl;
    matrix H;
    if( res< 1e-12) break;
    H= vhJ(Vh,Vh,factorize=1,solver=LU);
    w[]=H^-1*v[];
    u[] -= w[];
    plot (u,wait=0,cmm="solution with Newton Raphson");

    // FFCS: regression tests
    regtest=u[]'*u[]; //'
   }

load "medit" load "msh3"  
    mesh3 Th3= movemesh23(Th,transfo=[x,y,u*1.5]);
    medit("N",Th3);
}