File: Periodic.edp

package info (click to toggle)
freefem%2B%2B 3.47%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 132,088 kB
  • ctags: 19,726
  • sloc: cpp: 138,951; ansic: 22,605; sh: 4,951; makefile: 2,935; fortran: 1,147; perl: 768; awk: 282; php: 182
file content (16 lines) | stat: -rw-r--r-- 825 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
 mesh Th=square(10,10,[2*x*pi,2*y*pi]);
 fespace Vh(Th,P2,periodic=[[2,y],[4,y],[1,x],[3,x]]);     // the label 2 and 4 are periodic
 //  [a1,b1,b2,f1],[b,fb] the degree of freedom of of the border a1,b1,c1 and b are equivalent 
 //  via fonctions f1 and f2 
 //  here full periodic in x and y direction
 Vh uh,vh;              // unkown and test function. 
 func f=sin(x+pi/4.)*cos(y+pi/4.);                 //  right hand side function 
 func g=0;                 //  boundary condition function
 
 problem laplace(uh,vh) =                    //  definion of  the problem 
    int2d(Th)( dx(uh)*dx(vh) + dy(uh)*dy(vh) ) //  bilinear form
  + int2d(Th)( -f*vh )                          //  linear form
;                

  laplace; // solve the problem plot(uh); // to see the result
  plot(uh,ps="period.eps",value=true);