File: VI.edp

package info (click to toggle)
freefem%2B%2B 3.47%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 132,088 kB
  • ctags: 19,726
  • sloc: cpp: 138,951; ansic: 22,605; sh: 4,951; makefile: 2,935; fortran: 1,147; perl: 768; awk: 282; php: 182
file content (82 lines) | stat: -rw-r--r-- 2,956 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
// variationnal inequality 
// --------------------------
//  Probleme:
//  $ - \Delta u = f , \quad u=gd \on \Gamma, \quad u < g $
//  algo of   Primal-Dual Active set strategy as a semi smoth Newton Method
//   HinterMuller , K. Ito, K. Kunisch 
//  to appeared in SIAM Option
// Thank to O. Pironneau 
// --------------------------
// F. Hecht april 2005
//  -----------------------
 mesh Th=square(20,20);
 real eps=1e-5;
 fespace Vh(Th,P1);     // P1 FE space
 int n = Vh.ndof; // number of Degree of freedom
 Vh uh,uhp;              // solution and previous one
 Vh Ik; //  to def the set where the containt is reached. 
 real[int] rhs(n); // to store the right and side of the equation 
 real c=10;  // the parameter of the algoritme
 func f=1;         //  right hand side function 
 func fd=0;         // Dirichlet   boundary condition function
 Vh g=0.05;
// array to store   
real[int] Aii(n),Aiin(n); // store the diagonal of the matrix




 real tgv = 1e30; // a hude value of exact penalisation of boundary condition
//  the variatonnal form of the problem:
 varf a(uh,vh) =                    //  definion of  the problem 
    int2d(Th)( dx(uh)*dx(vh) + dy(uh)*dy(vh) ) //  bilinear form
  - int2d(Th)( f*vh )                          //  linear form
  + on(1,2,3,4,uh=fd) ;                      //  boundary condition form



// two version of the problem  
matrix A=a(Vh,Vh,tgv=tgv,solver=CG);
matrix AA=a(Vh,Vh);

//  the mass Matrix construction: 
varf vM(uh,vh) = int2d(Th)(uh*vh);
matrix M=vM(Vh,Vh); // to do a fast computing of $L^2$ norm : sqrt( u'*(w=M*u)) 
Aii=A.diag; // get the diagonal of the matrix 

rhs = a(0,Vh,tgv=tgv);
Ik =0;
uhp=0;
Vh lambda=0;
for(int iter=0;iter<100;++iter)
{
  real[int] b(n) ; b=rhs;  //  get a copy of the Right hand side 
  real[int] Ak(n); //  the complementary of Ik ( !Ik = (Ik-1))
  // Today  the operator Ik- 1. is not implement so we do:
  Ak= 1.; Ak  -= Ik[];  // build Ak  = ! Ik 
  //  adding new locking  condition on b and on the diagonal if (Ik ==1 )
  b = Ik[] .* g[];      b *= tgv;     b  -=  Ak .* rhs;
  Aiin = Ik[] *  tgv;      Aiin  +=  Ak  .* Aii;  //set  Aii= tgv  $ i \in Ik $
  A.diag = Aiin; //  set the matrix diagonal 
  set(A,solver=CG); // important to change precondiconning  for solving
  uh[] = A^-1* b;   //  solve the problem with more locking condition
  lambda[] = AA * uh[]; //  compute the resudal ( fast with matrix)
  lambda[] += rhs; // remark rhs = $-\int f v $ 

  Ik = ( lambda + c*( g- uh)) < 0.;  //  set the new value 
  
   plot(Ik, wait=1,cmm=" lock set ",value=1 );
   plot(uh,wait=1,cmm="uh");
   // trick to compute  $L^2$ norm of the variation
      real[int] diff(n),Mdiff(n);  
      diff= uh[]-uhp[];    
      Mdiff = M*diff; 
      real err = sqrt(Mdiff'*diff);
  cout << "  || u_{k=1} - u_{k} ||_2 " << err << endl;
  if(err< eps) break; // stop test 
  uhp[]=uh[] ; // set the previous solution 
} 
savemesh(Th,"mm",[x,y,uh*10]);