1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
// cleanning version 07/2008 FH in Sevilla.
int nerr =0;
int debugJ =0;
int debugdJ =0;
real umax=0;
{
func bool stop(int iter,real[int] u,real[int] g)
{
cout << " stop = " << iter << " " << u.linfty << " " << g.linfty << endl;
return g.linfty < 1e-5 || iter > 15;;
}
// minimisation of $J(u) = \frac12\sum (i+1) u_i^2 - b_i $
// work array
real[int] b(10),u(10);
func real J(real[int] & u)
{
real s=0;
for (int i=0;i<u.n;i++)
s +=(i+1)*u[i]*u[i]*0.5 - b[i]*u[i];
if(debugJ) cout << "J ="<< s << " u =" << u[0] << " " << u[1] << "...\n" ;
return s;
}
// the grad of J (this is a affine version (the RHS is in )
func real[int] DJ(real[int] &u)
{
for (int i=0;i<u.n;i++)
u[i]=(i+1)*u[i];
if(debugdJ) cout << "dJ0 ="<< " u =" << u[0] << " " << u[1] << " " << u[2] << "...\n" ;
u -= b;
if(debugdJ) cout << "dJ-b ="<< " u =" << u[0] << " " << u[1] << " " << u[2] << "...\n" ;
return u; // return of global variable ok
};
// the grad of the bilinear part of J (the RHS in remove)
func real[int] DJ0(real[int] &u)
{
for (int i=0;i<u.n;i++)
u[i]=(i+1)*u[i];
if(debugdJ) cout << "dJ0 ="<< " u =" << u[0] << " " << u[1] << " " << u[2] << "...\n" ;
return u; // return of global variable ok
};
func real error(real[int] & u,real[int] & b)
{
real s=0;
for (int i=0;i<u.n;i++)
s += abs((i+1)*u[i] - b[i]);
return s;
}
func real[int] matId(real[int] &u) { return u;};
int verb=5; // verbosity of algo ..
b=1. ; u=0.; // set right hand side and initial gest
LinearCG(DJ,u,eps=1.e-6,nbiter=20,precon=matId,verbosity=verb);
cout << "LinearGC (Affine) : J(u) = " << J(u) << " err=" << error(u,b) << endl;
nerr += !(error(u,b) < 1e-5);
if(nerr) cout << " sol: "<< " u =" << u[0] << " " << u[1] << " " << u[2] << "...\n" ;
b=1; u=0;
LinearCG(DJ,u,eps=1.e-15,nbiter=20,precon=matId,verbosity=50,stop=stop);
cout << "LinearGC (Affine with stop) : J(u) = " << J(u) << " err=" << error(u,b) << endl;
nerr += !(error(u,b) < 1e-5);
if(nerr) cout << " sol: "<< " u =" << u[0] << " " << u[1] << " " << u[2] << "...\n" ;
b=1; u=0; // set right hand side and initial gest
LinearCG(DJ0,u,b,eps=1.e-6,nbiter=20,precon=matId,verbosity=verb);
cout << "LinearGC (Linear) : J(u) = " << J(u) << " err=" << error(u,b) << endl;
nerr += !(error(u,b) < 1e-5);
if(nerr) cout << " sol: "<< " u =" << u[0] << " " << u[1] << " " << u[2] << "...\n" ;
b=1; u=0; // set right hand side and initial gest
AffineGMRES(DJ,u,eps=1.e-6,nbiter=20,precon=matId,verbosity=verb); // correct in version 3.11
cout << "LinearGMRES (Affine) : J(u) = " << J(u) << " err=" << error(u,b) << endl;
nerr += !(error(u,b) < 1e-5);
if(nerr) cout << " sol: "<< " u =" << u[0] << " " << u[1] << " " << u[2] << "...\n" ;
b=1; u=0; // set right hand side and initial gest
LinearGMRES(DJ0,u,b,eps=1.e-6,nbiter=20,precon=matId,verbosity=verb);
cout << "LinearGMRES (Linear) : J(u) = " << J(u) << " err=" << error(u,b) << endl;
nerr += !(error(u,b) < 1e-5);
if(nerr) cout << " sol: "<< " u =" << u[0] << " " << u[1] << " " << u[2] << "...\n" ;
b=1; u=0; // set right hand side and initial gest
NLCG(DJ,u,eps=1.e-6,nbiter=20,precon=matId,verbosity=verb);
cout << "NLCG: J(u) = " << J(u) << " err=" << error(u,b) << endl;
nerr += !(error(u,b) < 1e-5);
if(nerr) cout << " sol: "<< " u =" << u[0] << " " << u[1] << " " << u[2] << "...\n" ;
// warning BFGS use a full matrix of size nxn (where n=u.n)
b=1; u=2; // set right hand side and initial gest
BFGS(J,DJ,u,eps=1.e-6,nbiter=20,nbiterline=20);
cout << "BFGS: J(u) = " << J(u) << " err=" << error(u,b) << endl;
assert(error(u,b) < 1e-5);
if(nerr) cout << " sol: "<< " u =" << u[0] << " " << u[1] << " " << u[2] << "...\n" ;
assert(nerr==0);
};
{ // --- a real non linear test ---
mesh Th=square(10,10); // mesh definition of $\Omega$
fespace Vh(Th,P1); // finite element space
fespace Ph(Th,P0); // make optimization
Vh b=1; // to defined b
// $ J(u) = 1/2\int_\Omega f(|\nabla u|^2) - \int\Omega u b $
// $ f(u) = a*u + u-ln(1+u), \quad f'(u) = a+\frac{u}{1+u}, \quad f''(u) = \frac{1}{(1+u)^2}$
real a=0.001;
func real f(real u) { return u*a+u-log(1+u); }
func real df(real u) { return a+u/(1+u);}
func real ddf(real u) { return 1/((1+u)*(1+u));}
// the functionnal J
func real J(real[int] & u)
{
Vh w;w[]=u;
real r=int2d(Th)(0.5*f( dx(w)*dx(w) + dy(w)*dy(w) ) - b*w) ;
cout << "J(u) =" << r << " " << u.min << " " << u.max << endl;
return r;
}
// -----------------------
Vh u=0; // the current value of the solution
Ph alpha; // of store $df(|\nabla u|^2)$
int iter=0;
alpha=df( dx(u)*dx(u) + dy(u)*dy(u) ); // optimization
func real[int] dJ(real[int] & u)
{
Vh w;w[]=u;
alpha=df( dx(w)*dx(w) + dy(w)*dy(w) ); // optimization
varf au(uh,vh) = int2d(Th)( alpha*( dx(w)*dx(vh) + dy(w)*dy(vh) ) - b*vh)
+ on(1,2,3,4,uh=0);
u= au(0,Vh);
return u; // warning no return of local array
}
varf alap(uh,vh)=
int2d(Th)( alpha *( dx(uh)*dx(vh) + dy(uh)*dy(vh) )) + on(1,2,3,4,uh=0);
varf amass(uh,vh)= int2d(Th)( uh*vh) + on(1,2,3,4,uh=0);
matrix Amass = amass(Vh,Vh,solver=CG);
matrix Alap= alap(Vh,Vh,solver=Cholesky,factorize=1);
func real[int] C(real[int] & u)
{
real[int] w=Amass*u;
u = Alap^-1*w;
return u; // no return of local array variable
}
int conv=0;
real eps=1e-6;
for(int i=0;i<20;i++)
{
conv=NLCG(dJ,u[],nbiter=10,precon=C,veps=eps,verbosity=5);
if (conv) break;
alpha=df( dx(u)*dx(u) + dy(u)*dy(u) ); // optimization
Alap = alap(Vh,Vh,solver=Cholesky,factorize=1);
cout << " restart with new preconditionner " << conv << " eps =" << eps << endl;
}
plot (u,wait=1,cmm="solution with NLCG");
umax = u[].max;
Vh sss= df( dx(u)*dx(u) + dy(u)*dy(u) ) ;
plot (sss,wait=0,fill=1,value=1);
// the method of Newton Ralphson to solve dJ(u)=0;
// see Newton.edp example
}
assert(nerr==0);
|