File: freeboundary-weak.edp

package info (click to toggle)
freefem%2B%2B 3.47%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 132,088 kB
  • ctags: 19,726
  • sloc: cpp: 138,951; ansic: 22,605; sh: 4,951; makefile: 2,935; fortran: 1,147; perl: 768; awk: 282; php: 182
file content (101 lines) | stat: -rw-r--r-- 2,498 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
//  
//   calcul d'une zone saturation en eau (nappe phreatique)
//
verbosity=1;
real weak=1;
string com= "  avec du/dn ";
if(weak) com = " avec du/du = residu  ";
real L=10;        // longueur du domaine					   	
real Q=0.02;      // flux entrant
real K=0.5;	      //permeabilite	

real  erradap=0.001;
real  coef=1;



real h=2.1;	 // hauteur du bord gauche
real h1=0.35;    // hauteur du bord droite

//  maillage d'un tapeze
border a(t=0,L){x=t;y=0;};       // bas			   	
border b(t=0,h1){x=L;y=t;};      // droite
border f(t=L,0){x=t;y=t*(h1-h)/L+h;}; //  free surface
border d(t=h,0){x=0;y=t;};      // gauche

int n=10;
mesh Th=buildmesh (a(L*n)+b(h1*n)+f(sqrt(L^2+(h-h1)^2)*n)+d(h*n));

plot(Th,ps="dTh.eps");

fespace Vh(Th,P1);

int j=0,ii=0;

Vh p,v,pp,vv;

varf vPp(p,pp) = int2d(Th)( dx(p)*dx(pp)+dy(p)*dy(pp));
varf vonfree(p,pp) =on(f,p=1);
Vh onfree,wdpdn;
onfree[]=vonfree(0,Vh);
cout << "pb ?" << endl;
onfree[]/=onfree[].max; // sauce
cout << "pb non " << endl;
matrix A= vPp(Vh,Vh,solver=CG);


problem Pp(p,pp,solver=CG) = int2d(Th)( dx(p)*dx(pp)+dy(p)*dy(pp)) 
  + on(b,f,p=y) ;

//  --  imprecise (fort)
problem Pv(v,vv,solver=CG) = int2d(Th)( dx(v)*dx(vv)+dy(v)*dy(vv)) 
  +  on (a, v=0) + int1d(Th,f)(vv*((Q/K)*N.y- (dx(p)*N.x+dy(p)*N.y))); 
//   -- precise (faible)
problem Pw(v,vv,solver=CG) = int2d(Th)( dx(v)*dx(vv)+dy(v)*dy(vv)) 
  +  on (a, v=0) + int1d(Th,f)(vv*((Q/K)*N.y)) + wdpdn[]; 
  

real errv=1;
verbosity=1;
while(errv>1e-6)
{
  j++;       
  Pp;
  if (weak) {   wdpdn[] = A*p[]; wdpdn[] = wdpdn[].*onfree[];   wdpdn[] = -wdpdn[];
             Pw;}
  else Pv;
  errv=int1d(Th,f)(v*v);
  plot(Th,p,v ,cmm=com+"   iter = "+j+ "  errv =" +errv,wait=0);
  
//  if (j%10==0)
//    Th=adaptmesh(Th,p,err=erradap ) ;
  real coef=1;
  real mintcc = checkmovemesh(Th,[x,y])/5.; 
  real mint = checkmovemesh(Th,[x,y-v*coef]); 
  
  if (mint<mintcc ||  j%10==0) {  
    Th=adaptmesh(Th,p,err=erradap ) ;
    
     mintcc = checkmovemesh(Th,[x,y])/5.;     
     wdpdn=0; 	
     onfree=0;
  }
  
  while (1) 
  {  	    
    real mint = checkmovemesh(Th,[x,y-v*coef]); 
    
    if (mint>mintcc) break;
    
    cout << " min |T]  " << mint << endl;    
    coef /= 1.5;
  }
  
  Th=movemesh(Th,[x,y-coef*v]); // calcul de la deformation 
  A= vPp(Vh,Vh,solver=CG);	
  onfree[]=vonfree(0,Vh);onfree[]/=onfree[].max; // sauce
  cout << "\n\n"<<j <<"------------ errv = " << errv << "\n\n";

}
//plot(Th,wiat=1,ps="d_Thf.eps",cmm=com);
plot(p,wait=1,ps="d_u.eps",cmm=com);