File: mortar-DN-4.edp

package info (click to toggle)
freefem%2B%2B 3.47%2Bdfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 132,088 kB
  • ctags: 19,726
  • sloc: cpp: 138,951; ansic: 22,605; sh: 4,951; makefile: 2,935; fortran: 1,147; perl: 768; awk: 282; php: 182
file content (231 lines) | stat: -rw-r--r-- 5,483 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
assert(version>=2.23);
//  Mortar  (4 sub domain) 
//  with matrix -et Precon Conjugade Gradient --
//    Neuman -> Dirichlet . 
//  -------------------------------

func f=1+x+y;
real g=1; 
int withprecon=1; 
macro Grad(u) [ dx(u), dy(u) ] //
int nbsd=4;

macro Psd(U) U[0],U[1],U[2],U[3] //
int labext= nbsd+1;
real meshsize=0.025; 
real meshsizem=meshsize*1.5; 
bool noconforme=0;
include "mortar-msh.idp"
cout << "mortar : " << endl;
mesh Thm=Tha;
Thm=adaptmesh(Thm,meshsizem,IsMetric=1,thetamax=60,nbvx=100000);
Thm=adaptmesh(Thm,meshsizem,IsMetric=1,thetamax=60,nbvx=1000000);

Thm=emptymesh(Thm);
mesh Thmm=Thm;
if(noconforme)
  {  //  need a find mesh to integrate on Thm. 
    Thmm=trunc(Thm,split=4,1); // for fine integration
    Thmm=emptymesh(Thmm);
  }
plot(Thm,wait=0);

verbosity=1;


mesh[int] Thsd(nbsd);

for(int sd=0;sd<nbsd;++sd)
 Thsd[sd]=trunc(Tha,region==regi[sd],split=1);// les sous domaines

if(noconforme)
{
for(int sd=0;sd<nbsd;++sd)
 Thsd[sd]=adaptmesh(Thsd[sd],meshsize*(1+sd*0.05),IsMetric=1,nbvx=100000,thetamax=60);// les sous domaines

}
plot(Thsd,Thm);
// a faire : plot(Thsd,Thm,wait=1); 

fespace Lh(Thm,P1);
fespace RTh(Thm,[P0edge,P0edge]);
 RTh [Nmx,Nmy]; // ne marche pas car la normal 
//                             n'est definie que une un bord
varf  vNN([ux,uy],[nx,ny]) = int1d(Thm,1)(( nx*N.x + ny*N.y)/lenEdge);
Nmx[]= vNN(0,RTh);

// les joint P0 sur le squelette 
// -----   \int [q] l + \int[p] m 
Lh  lh=0,rhsl=0;

mesh Thi=Thsd[0];

// remark: operator # is  the concatenation operator in macro 

//   cout << " Domaine " << i<< " --------" << endl;
// OK P1/P0 ;, PB P1/P1,  P1/P0Edge , FH..
fespace Vhi(Thi,P1);
fespace Ehi(Thi,P0);
matrix[int] Asd(nbsd),Csd(nbsd),PAsd(nbsd),PIsd(nbsd),PJsd(nbsd);
Vhi[int] usd(nbsd),vsd(nbsd),rhssd(nbsd), pusd(nbsd),bcsd(nbsd);
Ehi[int] epssd(nbsd);
   
real tgv=1e30;
for(int sd=0;sd<nbsd;++sd)
{

  varf cci([l],[u]) = int1d(Thmm,1,qforder=3)(l*u*epssd[sd]);
  varf vepsi(u,v)= int1d(Thi,1,qforder=10)( (Nmx*N.x + Nmy*N.y)*v/lenEdge);
  
  varf vLapMi([ui],[vi],tgv=tgv) =
         int2d(Thi)(  Grad(ui)'*Grad(vi)  )
      // + int1d(Thi,1,qfe=qf1pElump)(alpha*ui*vi)
    +  int2d(Thi) (f*vi)   +  on(labext,ui=g);  
    
  varf vPLapMi([ui],[vi],tgv=tgv) =
        int2d(Thi)(  Grad(ui)'*Grad(vi)  )
     // + int1d(Thi,1,qfe=qf1pElump)(alphap*ui*vi)
      + on(labext,1,ui=0);
   ;  

   varf  vrhsMi(ui,vi) =   on(labext,ui=g);

   Thi=Thsd[sd];
   usd[sd]=0;
   vsd[sd]=0;
   epssd[sd][]= vepsi(0,Ehi);
   epssd[sd] = -real(epssd[sd] <-0.00001) + real(epssd[sd] >0.00001);
   
   Csd[sd]  = cci(Lh,Vhi);
   Asd[sd]  = vLapMi(Vhi,Vhi,solver=UMFPACK);
   PAsd[sd] = vPLapMi(Vhi,Vhi,solver=UMFPACK);
   matrix IVL=interpolate(Vhi,Lh,inside=1);
   //   v = IVL*l 
   varf vonext(u,v)=on(labext,u=1);
   varf von1(u,v)=on(1,u=1);
   real[int]  onext=vonext(0,Vhi);
   real[int]  on1=von1(0,Vhi);
   on1= on1 ? 1 : 0;
   on1 = onext ? 0 : on1; //  remove df of ext
   matrix I1(on1);//   matrix    tgv $i\in Gamma_1 \ Gamma_e $ , 0 otherwise
   
   PIsd[sd]=  I1*IVL;//  remove of line not on $Gamma_1 \ Gamma_e $
 
    // so PIsd[sd]*l  =  tgv * Interpole l on $Gamma_1 \ Gamma_e $
   I1.diag=on1;
   matrix AA=I1*Asd[sd];//  remove line not on lab 1 
   PJsd[sd]= IVL'*AA;
   
   
   rhssd[sd][]=vLapMi(0,Vhi);

}

plot(epssd,cmm="eps 0,1,2,3",wait=0,value=1);


lh[]=0;
varf  vDD(u,v) = int2d(Thm)(u*v*1e-10);
varf  vML(u,v) = int2d(Thm)(u*v*1e-10)+int1d(Thm,1)(u*v);
matrix ML=vML(Lh,Lh);




matrix DD=vDD(Lh,Lh);

matrix M=[ 
  [ Asd[0] ,0      ,0      ,0      ,Csd[0] ],
  [ 0      ,Asd[1] ,0      ,0      ,Csd[1] ],
  [ 0      ,0      ,Asd[2] ,0      ,Csd[2] ],
  [ 0      ,0      ,0      ,Asd[3] ,Csd[3] ],
  [ Csd[0]',Csd[1]',Csd[2]',Csd[3]',DD     ] 
 ];

real[int] xx(M.n);

real[int] bb =[rhssd[0][], rhssd[1][],rhssd[2][],rhssd[3][],rhsl[] ];
set(M,solver=UMFPACK);

xx = M^-1 * bb;

[usd[0][],usd[1][],usd[2][],usd[3][],lh[]] = xx; // dispatch the solution 

plot(usd,cmm="u1,u2,u3,u4",wait=1); 


int itera=0;

varf  vbc(u,v) =   int1d(Thm,labext)(v);
real[int] lbc(Lh.ndof),lbc0(Lh.ndof);
lbc=vbc(0,Lh);
lbc = lbc ? 0 : 1 ; 

func real[int] SkPb(real[int] &l)
{ 
   int verb=verbosity;   verbosity=0;   itera++;
   for(int sd=0;sd<nbsd;++sd)
    {
      Thi=Thsd[sd];  //  for initialisation of vsd with the correct size 
      vsd[sd][]  = rhssd[sd][];
      vsd[sd][] += Csd[sd]* l;
      usd[sd][]  = Asd[sd]^-1*vsd[sd][];

    }
    l=0;
   for(int sd=0;sd<nbsd;++sd)
     	l  += Csd[sd]'*usd[sd][];  
     	
    l= lbc .* l; 
    plot(usd,wait=0,cmm="CG iteration u");
   verbosity=verb; 
   return l ;
};

func real[int] PSkPb(real[int] &l)
{ 
  if(withprecon)
  {  	
   int verb=verbosity;   verbosity=0;   itera++;
   real[int] ll= ML^-1*l;
   ll= lbc .* ll; 
   ll *= tgv;
 
   for(int sd=0;sd<nbsd;++sd)
    {
      Thi=Thsd[sd];              
      pusd[sd][] = PAsd[sd]^-1*(vsd[sd][]= PIsd[sd]* ll);
    }
    ll=0;
   for(int sd=0;sd<nbsd;++sd)
     ll  += PJsd[sd]*pusd[sd][];  
    l = ML^-1*ll; 	
    l= lbc .* l; 
   verbosity=verb; 
  }
  return l ;
};


verbosity=100;
lh[]=0;
LinearCG(SkPb,lh[],eps=1.e-7,nbiter=100,precon=PSkPb);
verbosity=1; 

plot(usd,wait=1,cmm="CG");

// FFCS: for regression tests
real regtest;
{  
fespace Vha(Tha,P1);
Vha vah,uah;
solve vLapMM([uah],[vah]) =
       int2d(Tha)(  Grad(uah)'*Grad(vah) )
    -  int2d(Tha) (f*vah)
    +  on(labext,uah=g)
   ;
verbosity =3;
plot(uah,usd,cmm="uah",wait=1); 
regtest=uah[]'*uah[];
}