File: ExampleMetrics.h

package info (click to toggle)
freefem%2B%2B 3.61.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 17,108 kB
  • sloc: cpp: 141,214; ansic: 28,664; sh: 4,925; makefile: 3,142; fortran: 1,171; perl: 844; awk: 290; php: 199; pascal: 41; f90: 32
file content (146 lines) | stat: -rw-r--r-- 5,441 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
/****************************************************************************/
/* This file is part of FreeFem++.                                          */
/*                                                                          */
/* FreeFem++ is free software: you can redistribute it and/or modify        */
/* it under the terms of the GNU Lesser General Public License as           */
/* published by the Free Software Foundation, either version 3 of           */
/* the License, or (at your option) any later version.                      */
/*                                                                          */
/* FreeFem++ is distributed in the hope that it will be useful,             */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of           */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            */
/* GNU Lesser General Public License for more details.                      */
/*                                                                          */
/* You should have received a copy of the GNU Lesser General Public License */
/* along with FreeFem++. If not, see <http://www.gnu.org/licenses/>.        */
/****************************************************************************/
// SUMMARY : ...
// LICENSE : LGPLv3
// ORG     : LJLL Universite Pierre et Marie Curie, Paris, FRANCE
// AUTHORS : Jean-Marie Mirebeau
// E-MAIL  : jean-marie.mirebeau@math.u-psud.fr

#ifndef EXAMPLE_METRICS_H
#define EXAMPLE_METRICS_H

#include "math.h"
#include "RZ.h"

// ********** functions ***********

/*
 * Some riemannian metrics on the unit square or cube, for the purpose of testing algorithms.
 */

template<int whichMetric> const sym2 ExampleMetric (const R2 &P);
template<int whichMetric> const sym3 ExampleMetric3D (const R3 &P);

/********************** 2D *****************/

template<>
const sym2 ExampleMetric<0>(const R2 &P) {return sym2(1, 0, 1);}// identity

template<>
const sym2 ExampleMetric<1>(const R2 &P) {	// A piecewise constant anisotropic metric
	const double scal = fabs(P.x - 1 / 2.) < 1 / 6. ? 4 : 1;

	return sym2(scal, -scal, 4 * scal);
}

template<>
const sym2 ExampleMetric<2>(const R2 &P) {	// circle, regularity Graded.
	const double delta = 0.03;	// paramètre
	const R2 Q = P - R2(0.5, 0.5);
	const double r = Q.norm();
	const double h = max(fabs(r - 1 / 2.), delta);

	return sym2(1 / (h * h), 1 / h, Q);
}

template<>
const sym2 ExampleMetric<3>(const R2 &P) {	// circle, regularity QuasiAcute.
	const double delta = 0.4;	// paramètre
	const R2 Q = P - R2(0.5, 0.5);
	const double r = Q.norm();
	const double h = max(fabs(r - 1 / 2.), delta);
	const double k = max(fabs(r - 1 / 2.), delta * delta);

	return sym2(1 / (k * k), 1 / (h * h), Q);
}

template<>
const sym2 ExampleMetric<4>(const R2 &P) {return sym2(10, 0, 1);}	// diagonal

template<>
const sym2 ExampleMetric<5>(const R2 &P) {	// High anisotropy along the spiral r=k(theta+2 mu Pi), mu in {0,1,2}.
	const double pi = 4 * atan(1);
	const double width = 0.006;
	const double k = 0.4 / (6 * pi);
	const double mu = 100.;
	const R2 Q = P - R2(0.5, 0.5);
	const double r = Q.norm();
	double theta = Q.x == -r ? pi : 2 * atan(Q.y / (r + Q.x));	// theta = theta >= 0 ? theta : theta+pi;

	if (fabs(r - k * theta) <= width)
		theta = theta + 0 * pi;
	else if (fabs(r - k * (theta + 2 * pi)) <= width)
		theta = theta + 2 * pi;
	else if (fabs(r - k * (theta + 4 * pi)) <= width)
		theta = theta + 4 * pi;
	else if (fabs(r - k * (theta + 6 * pi)) <= width && theta <= 0)
		theta = theta + 6 * pi;
	else
		return sym2(1, 0, 1);	// {metric[0]=1; metric[1]=0; metric[2]=1; break;}

	double c = cos(theta) - theta * sin(theta), s = sin(theta) + theta * cos(theta);// tangente à la spirale
	double cOld = c;
	c = -s;
	s = cOld;

	return sym2(1, 1 / (mu * mu), R2(c, s));
}

template<>
const sym2 ExampleMetric<6>(const R2 &P) {	// high but constant anisotropy
	const double mu = 30., t = 0.3;
	R2 Q(cos(t), sin(t));

	return sym2(1, 1 / (mu * mu), Q);
}

template<> const sym2 ExampleMetric<7>(const R2 &P) {const double s = 0.1 + (P - R2(0.1, 0.2)).norm(); return sym2() / square(s);}

template<> const sym2 ExampleMetric<8>(const R2 &P) {const double s = 0.1 + (P - R2(0.1, 0.2)).norm(); return sym2(100, 1, R2(1 / 2., sqrt(3.) / 2)) / square(s);}

template<> const sym2 ExampleMetric<9>(const R2 &P) {const double s = 0.1 + fabs(P.x); return sym2(100, 0, 1) / square(s);}

// template<int whichMetric> sym2 coExampleMetric(const R2 & P){return ExampleMetric<whichMetric>(P).comatrix();}

/************************ 3D *************************/

template<>
const sym3 ExampleMetric3D<0>(const R3 &P) {return sym3(1, 1, 1, 0, 0, 0);}

template<>
const sym3 ExampleMetric3D<1>(const R3 &P) {return sym3(1, 10, 100, 0, 0, 0);}

template<>
const sym3 ExampleMetric3D<2>(const R3 &P) {return sym3(1, 10, R3(0.1, -0.2, 0.4));}

template<>
const sym3 ExampleMetric3D<3>(const R3 &P) {// tire bouchon...
	const double r0 = 0.33;
	const double theta0 = 4 * M_PI;
	const double delta0 = 0.06;
	const double mu = 1 / 8.;
	const R3 Q(P.x - 0.5, P.y - 0.5, P.z - 0.5);
	const double r = sqrt(Q.x * Q.x + Q.y * Q.y);

	if (fabs(r - r0) > delta0) {return sym3();}

	if (square(Q.x - r * cos(theta0 * Q.z)) + square(Q.y - r * sin(theta0 * Q.z)) > square(r * delta0)) {return sym3();}

	return sym3(mu * mu, 1, R3(-r0 * theta0 * sin(theta0 * Q.z), r0 * theta0 * cos(theta0 * Q.z), 1));
}

#endif