File: newuoa.f

package info (click to toggle)
freefem%2B%2B 3.61.1%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 17,108 kB
  • sloc: cpp: 141,214; ansic: 28,664; sh: 4,925; makefile: 3,142; fortran: 1,171; perl: 844; awk: 290; php: 199; pascal: 41; f90: 32
file content (1455 lines) | stat: -rw-r--r-- 44,581 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
C  version modif by F. HECHT
C ---------------------------
C The code in fortran is totally free, and the interface is under LGPL 
C http://www.inrialpes.fr/bipop/people/guilbert/newuoa/newuoa.pdf 
C  original source :
C http://www.inrialpees.fr/bipop/people/guilbert/newuoa/newuoa.tar.gz
C --------------------
      SUBROUTINE BIGDEN (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KOPT,
     1  KNEW,D,W,VLAG,BETA,S,WVEC,PROD)
      IMPLICIT REAL*8 (A-H,O-Z)
      DIMENSION XOPT(*),XPT(NPT,*),BMAT(NDIM,*),ZMAT(NPT,*),D(*),
     1  W(*),VLAG(*),S(*),WVEC(NDIM,*),PROD(NDIM,*)
      DIMENSION DEN(9),DENEX(9),PAR(9)
C
C     N is the number of variables.
C     NPT is the number of interpolation equations.
C     XOPT is the best interpolation point so far.
C     XPT contains the coordinates of the current interpolation points.
C     BMAT provides the last N columns of H.
C     ZMAT and IDZ give a factorization of the first NPT by NPT submatrix of H.
C     NDIM is the first dimension of BMAT and has the value NPT+N.
C     KOPT is the index of the optimal interpolation point.
C     KNEW is the index of the interpolation point that is going to be moved.
C     D will be set to the step from XOPT to the new point, and on entry it
C       should be the D that was calculated by the last call of BIGLAG. The
C       length of the initial D provides a trust region bound on the final D.
C     W will be set to Wcheck for the final choice of D.
C     VLAG will be set to Theta*Wcheck+e_b for the final choice of D.
C     BETA will be set to the value that will occur in the updating formula
C       when the KNEW-th interpolation point is moved to its new position.
C     S, WVEC, PROD and the private arrays DEN, DENEX and PAR will be used
C       for working space.
C
C     D is calculated in a way that should provide a denominator with a large
C     modulus in the updating formula when the KNEW-th interpolation point is
C     shifted to the new position XOPT+D.
C
C     Set some constants.
C
      HALF=0.5D0
      ONE=1.0D0
      QUART=0.25D0
      TWO=2.0D0
      ZERO=0.0D0
      TWOPI=8.0D0*DATAN(ONE)
      NPTM=NPT-N-1
C
C     Store the first NPT elements of the KNEW-th column of H in W(N+1)
C     to W(N+NPT).
C
      DO 10 K=1,NPT
   10 W(N+K)=ZERO
      DO 20 J=1,NPTM
      TEMP=ZMAT(KNEW,J)
      IF (J .LT. IDZ) TEMP=-TEMP
      DO 20 K=1,NPT
   20 W(N+K)=W(N+K)+TEMP*ZMAT(K,J)
      ALPHA=W(N+KNEW)
C
C     The initial search direction D is taken from the last call of BIGLAG,
C     and the initial S is set below, usually to the direction from X_OPT
C     to X_KNEW, but a different direction to an interpolation point may
C     be chosen, in order to prevent S from being nearly parallel to D.
C
      DD=ZERO
      DS=ZERO
      SS=ZERO
      XOPTSQ=ZERO
      DO 30 I=1,N
      DD=DD+D(I)**2
      S(I)=XPT(KNEW,I)-XOPT(I)
      DS=DS+D(I)*S(I)
      SS=SS+S(I)**2
   30 XOPTSQ=XOPTSQ+XOPT(I)**2
      IF (DS*DS .GT. 0.99D0*DD*SS) THEN
          KSAV=KNEW
          DTEST=DS*DS/SS
          DO 50 K=1,NPT
          IF (K .NE. KOPT) THEN
              DSTEMP=ZERO
              SSTEMP=ZERO
              DO 40 I=1,N
              DIFF=XPT(K,I)-XOPT(I)
              DSTEMP=DSTEMP+D(I)*DIFF
   40         SSTEMP=SSTEMP+DIFF*DIFF
              IF (DSTEMP*DSTEMP/SSTEMP .LT. DTEST) THEN
                  KSAV=K
                  DTEST=DSTEMP*DSTEMP/SSTEMP
                  DS=DSTEMP
                  SS=SSTEMP
              END IF
          END IF
   50     CONTINUE
          DO 60 I=1,N
   60     S(I)=XPT(KSAV,I)-XOPT(I)
      END IF
      SSDEN=DD*SS-DS*DS
      ITERC=0
      DENSAV=ZERO
C
C     Begin the iteration by overwriting S with a vector that has the
C     required length and direction.
C
   70 ITERC=ITERC+1
      TEMP=ONE/DSQRT(SSDEN)
      XOPTD=ZERO
      XOPTS=ZERO
      DO 80 I=1,N
      S(I)=TEMP*(DD*S(I)-DS*D(I))
      XOPTD=XOPTD+XOPT(I)*D(I)
   80 XOPTS=XOPTS+XOPT(I)*S(I)
C
C     Set the coefficients of the first two terms of BETA.
C
      TEMPA=HALF*XOPTD*XOPTD
      TEMPB=HALF*XOPTS*XOPTS
      DEN(1)=DD*(XOPTSQ+HALF*DD)+TEMPA+TEMPB
      DEN(2)=TWO*XOPTD*DD
      DEN(3)=TWO*XOPTS*DD
      DEN(4)=TEMPA-TEMPB
      DEN(5)=XOPTD*XOPTS
      DO 90 I=6,9
   90 DEN(I)=ZERO
C
C     Put the coefficients of Wcheck in WVEC.
C
      DO 110 K=1,NPT
      TEMPA=ZERO
      TEMPB=ZERO
      TEMPC=ZERO
      DO 100 I=1,N
      TEMPA=TEMPA+XPT(K,I)*D(I)
      TEMPB=TEMPB+XPT(K,I)*S(I)
  100 TEMPC=TEMPC+XPT(K,I)*XOPT(I)
      WVEC(K,1)=QUART*(TEMPA*TEMPA+TEMPB*TEMPB)
      WVEC(K,2)=TEMPA*TEMPC
      WVEC(K,3)=TEMPB*TEMPC
      WVEC(K,4)=QUART*(TEMPA*TEMPA-TEMPB*TEMPB)
  110 WVEC(K,5)=HALF*TEMPA*TEMPB
      DO 120 I=1,N
      IP=I+NPT
      WVEC(IP,1)=ZERO
      WVEC(IP,2)=D(I)
      WVEC(IP,3)=S(I)
      WVEC(IP,4)=ZERO
  120 WVEC(IP,5)=ZERO
C
C     Put the coefficents of THETA*Wcheck in PROD.
C
      DO 190 JC=1,5
      NW=NPT
      IF (JC .EQ. 2 .OR. JC .EQ. 3) NW=NDIM
      DO 130 K=1,NPT
  130 PROD(K,JC)=ZERO
      DO 150 J=1,NPTM
      SUM=ZERO
      DO 140 K=1,NPT
  140 SUM=SUM+ZMAT(K,J)*WVEC(K,JC)
      IF (J .LT. IDZ) SUM=-SUM
      DO 150 K=1,NPT
  150 PROD(K,JC)=PROD(K,JC)+SUM*ZMAT(K,J)
      IF (NW .EQ. NDIM) THEN
          DO 170 K=1,NPT
          SUM=ZERO
          DO 160 J=1,N
  160     SUM=SUM+BMAT(K,J)*WVEC(NPT+J,JC)
  170     PROD(K,JC)=PROD(K,JC)+SUM
      END IF
      DO 190 J=1,N
      SUM=ZERO
      DO 180 I=1,NW
  180 SUM=SUM+BMAT(I,J)*WVEC(I,JC)
  190 PROD(NPT+J,JC)=SUM
C
C     Include in DEN the part of BETA that depends on THETA.
C
      DO 210 K=1,NDIM
      SUM=ZERO
      DO 200 I=1,5
      PAR(I)=HALF*PROD(K,I)*WVEC(K,I)
  200 SUM=SUM+PAR(I)
      DEN(1)=DEN(1)-PAR(1)-SUM
      TEMPA=PROD(K,1)*WVEC(K,2)+PROD(K,2)*WVEC(K,1)
      TEMPB=PROD(K,2)*WVEC(K,4)+PROD(K,4)*WVEC(K,2)
      TEMPC=PROD(K,3)*WVEC(K,5)+PROD(K,5)*WVEC(K,3)
      DEN(2)=DEN(2)-TEMPA-HALF*(TEMPB+TEMPC)
      DEN(6)=DEN(6)-HALF*(TEMPB-TEMPC)
      TEMPA=PROD(K,1)*WVEC(K,3)+PROD(K,3)*WVEC(K,1)
      TEMPB=PROD(K,2)*WVEC(K,5)+PROD(K,5)*WVEC(K,2)
      TEMPC=PROD(K,3)*WVEC(K,4)+PROD(K,4)*WVEC(K,3)
      DEN(3)=DEN(3)-TEMPA-HALF*(TEMPB-TEMPC)
      DEN(7)=DEN(7)-HALF*(TEMPB+TEMPC)
      TEMPA=PROD(K,1)*WVEC(K,4)+PROD(K,4)*WVEC(K,1)
      DEN(4)=DEN(4)-TEMPA-PAR(2)+PAR(3)
      TEMPA=PROD(K,1)*WVEC(K,5)+PROD(K,5)*WVEC(K,1)
      TEMPB=PROD(K,2)*WVEC(K,3)+PROD(K,3)*WVEC(K,2)
      DEN(5)=DEN(5)-TEMPA-HALF*TEMPB
      DEN(8)=DEN(8)-PAR(4)+PAR(5)
      TEMPA=PROD(K,4)*WVEC(K,5)+PROD(K,5)*WVEC(K,4)
  210 DEN(9)=DEN(9)-HALF*TEMPA
C
C     Extend DEN so that it holds all the coefficients of DENOM.
C
      SUM=ZERO
      DO 220 I=1,5
      PAR(I)=HALF*PROD(KNEW,I)**2
  220 SUM=SUM+PAR(I)
      DENEX(1)=ALPHA*DEN(1)+PAR(1)+SUM
      TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,2)
      TEMPB=PROD(KNEW,2)*PROD(KNEW,4)
      TEMPC=PROD(KNEW,3)*PROD(KNEW,5)
      DENEX(2)=ALPHA*DEN(2)+TEMPA+TEMPB+TEMPC
      DENEX(6)=ALPHA*DEN(6)+TEMPB-TEMPC
      TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,3)
      TEMPB=PROD(KNEW,2)*PROD(KNEW,5)
      TEMPC=PROD(KNEW,3)*PROD(KNEW,4)
      DENEX(3)=ALPHA*DEN(3)+TEMPA+TEMPB-TEMPC
      DENEX(7)=ALPHA*DEN(7)+TEMPB+TEMPC
      TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,4)
      DENEX(4)=ALPHA*DEN(4)+TEMPA+PAR(2)-PAR(3)
      TEMPA=TWO*PROD(KNEW,1)*PROD(KNEW,5)
      DENEX(5)=ALPHA*DEN(5)+TEMPA+PROD(KNEW,2)*PROD(KNEW,3)
      DENEX(8)=ALPHA*DEN(8)+PAR(4)-PAR(5)
      DENEX(9)=ALPHA*DEN(9)+PROD(KNEW,4)*PROD(KNEW,5)
C
C     Seek the value of the angle that maximizes the modulus of DENOM.
C
      SUM=DENEX(1)+DENEX(2)+DENEX(4)+DENEX(6)+DENEX(8)
      DENOLD=SUM
      DENMAX=SUM
      ISAVE=0
      IU=49
      TEMP=TWOPI/DFLOAT(IU+1)
      PAR(1)=ONE
      DO 250 I=1,IU
      ANGLE=DFLOAT(I)*TEMP
      PAR(2)=DCOS(ANGLE)
      PAR(3)=DSIN(ANGLE)
      DO 230 J=4,8,2
      PAR(J)=PAR(2)*PAR(J-2)-PAR(3)*PAR(J-1)
  230 PAR(J+1)=PAR(2)*PAR(J-1)+PAR(3)*PAR(J-2)
      SUMOLD=SUM
      SUM=ZERO
      DO 240 J=1,9
  240 SUM=SUM+DENEX(J)*PAR(J)
      IF (DABS(SUM) .GT. DABS(DENMAX)) THEN
          DENMAX=SUM
          ISAVE=I
          TEMPA=SUMOLD
      ELSE IF (I .EQ. ISAVE+1) THEN
          TEMPB=SUM
      END IF
  250 CONTINUE
      IF (ISAVE .EQ. 0) TEMPA=SUM
      IF (ISAVE .EQ. IU) TEMPB=DENOLD
      STEP=ZERO
      IF (TEMPA .NE. TEMPB) THEN
          TEMPA=TEMPA-DENMAX
          TEMPB=TEMPB-DENMAX
          STEP=HALF*(TEMPA-TEMPB)/(TEMPA+TEMPB)
      END IF
      ANGLE=TEMP*(DFLOAT(ISAVE)+STEP)
C
C     Calculate the new parameters of the denominator, the new VLAG vector
C     and the new D. Then test for convergence.
C
      PAR(2)=DCOS(ANGLE)
      PAR(3)=DSIN(ANGLE)
      DO 260 J=4,8,2
      PAR(J)=PAR(2)*PAR(J-2)-PAR(3)*PAR(J-1)
  260 PAR(J+1)=PAR(2)*PAR(J-1)+PAR(3)*PAR(J-2)
      BETA=ZERO
      DENMAX=ZERO
      DO 270 J=1,9
      BETA=BETA+DEN(J)*PAR(J)
  270 DENMAX=DENMAX+DENEX(J)*PAR(J)
      DO 280 K=1,NDIM
      VLAG(K)=ZERO
      DO 280 J=1,5
  280 VLAG(K)=VLAG(K)+PROD(K,J)*PAR(J)
      TAU=VLAG(KNEW)
      DD=ZERO
      TEMPA=ZERO
      TEMPB=ZERO
      DO 290 I=1,N
      D(I)=PAR(2)*D(I)+PAR(3)*S(I)
      W(I)=XOPT(I)+D(I)
      DD=DD+D(I)**2
      TEMPA=TEMPA+D(I)*W(I)
  290 TEMPB=TEMPB+W(I)*W(I)
      IF (ITERC .GE. N) GOTO 340
      IF (ITERC .GT. 1) DENSAV=DMAX1(DENSAV,DENOLD)
      IF (DABS(DENMAX) .LE. 1.1D0*DABS(DENSAV)) GOTO 340
      DENSAV=DENMAX
C
C     Set S to half the gradient of the denominator with respect to D.
C     Then branch for the next iteration.
C
      DO 300 I=1,N
      TEMP=TEMPA*XOPT(I)+TEMPB*D(I)-VLAG(NPT+I)
  300 S(I)=TAU*BMAT(KNEW,I)+ALPHA*TEMP
      DO 320 K=1,NPT
      SUM=ZERO
      DO 310 J=1,N
  310 SUM=SUM+XPT(K,J)*W(J)
      TEMP=(TAU*W(N+K)-ALPHA*VLAG(K))*SUM
      DO 320 I=1,N
  320 S(I)=S(I)+TEMP*XPT(K,I)
      SS=ZERO
      DS=ZERO
      DO 330 I=1,N
      SS=SS+S(I)**2
  330 DS=DS+D(I)*S(I)
      SSDEN=DD*SS-DS*DS
      IF (SSDEN .GE. 1.0D-8*DD*SS) GOTO 70
C
C     Set the vector W before the RETURN from the subroutine.
C
  340 DO 350 K=1,NDIM
      W(K)=ZERO
      DO 350 J=1,5
  350 W(K)=W(K)+WVEC(K,J)*PAR(J)
      VLAG(KOPT)=VLAG(KOPT)+ONE
      RETURN
      END 
      SUBROUTINE BIGLAG (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KNEW,
     1  DELTA,D,ALPHA,HCOL,GC,GD,S,W)
      IMPLICIT REAL*8 (A-H,O-Z)
      DIMENSION XOPT(*),XPT(NPT,*),BMAT(NDIM,*),ZMAT(NPT,*),D(*),
     1  HCOL(*),GC(*),GD(*),S(*),W(*)
C
C     N is the number of variables.
C     NPT is the number of interpolation equations.
C     XOPT is the best interpolation point so far.
C     XPT contains the coordinates of the current interpolation points.
C     BMAT provides the last N columns of H.
C     ZMAT and IDZ give a factorization of the first NPT by NPT submatrix of H.
C     NDIM is the first dimension of BMAT and has the value NPT+N.
C     KNEW is the index of the interpolation point that is going to be moved.
C     DELTA is the current trust region bound.
C     D will be set to the step from XOPT to the new point.
C     ALPHA will be set to the KNEW-th diagonal element of the H matrix.
C     HCOL, GC, GD, S and W will be used for working space.
C
C     The step D is calculated in a way that attempts to maximize the modulus
C     of LFUNC(XOPT+D), subject to the bound ||D|| .LE. DELTA, where LFUNC is
C     the KNEW-th Lagrange function.
C
C     Set some constants.
C
      HALF=0.5D0
      ONE=1.0D0
      ZERO=0.0D0
      TWOPI=8.0D0*DATAN(ONE)
      DELSQ=DELTA*DELTA
      NPTM=NPT-N-1
C
C     Set the first NPT components of HCOL to the leading elements of the
C     KNEW-th column of H.
C
      ITERC=0
      DO 10 K=1,NPT
   10 HCOL(K)=ZERO
      DO 20 J=1,NPTM
      TEMP=ZMAT(KNEW,J)
      IF (J .LT. IDZ) TEMP=-TEMP
      DO 20 K=1,NPT
   20 HCOL(K)=HCOL(K)+TEMP*ZMAT(K,J)
      ALPHA=HCOL(KNEW)
C
C     Set the unscaled initial direction D. Form the gradient of LFUNC at
C     XOPT, and multiply D by the second derivative matrix of LFUNC.
C
      DD=ZERO
      DO 30 I=1,N
      D(I)=XPT(KNEW,I)-XOPT(I)
      GC(I)=BMAT(KNEW,I)
      GD(I)=ZERO
   30 DD=DD+D(I)**2
      DO 50 K=1,NPT
      TEMP=ZERO
      SUM=ZERO
      DO 40 J=1,N
      TEMP=TEMP+XPT(K,J)*XOPT(J)
   40 SUM=SUM+XPT(K,J)*D(J)
      TEMP=HCOL(K)*TEMP
      SUM=HCOL(K)*SUM
      DO 50 I=1,N
      GC(I)=GC(I)+TEMP*XPT(K,I)
   50 GD(I)=GD(I)+SUM*XPT(K,I)
C
C     Scale D and GD, with a sign change if required. Set S to another
C     vector in the initial two dimensional subspace.
C
      GG=ZERO
      SP=ZERO
      DHD=ZERO
      DO 60 I=1,N
      GG=GG+GC(I)**2
      SP=SP+D(I)*GC(I)
   60 DHD=DHD+D(I)*GD(I)
      SCALE=DELTA/DSQRT(DD)
      IF (SP*DHD .LT. ZERO) SCALE=-SCALE
      TEMP=ZERO
      IF (SP*SP .GT. 0.99D0*DD*GG) TEMP=ONE
      TAU=SCALE*(DABS(SP)+HALF*SCALE*DABS(DHD))
      IF (GG*DELSQ .LT. 0.01D0*TAU*TAU) TEMP=ONE
      DO 70 I=1,N
      D(I)=SCALE*D(I)
      GD(I)=SCALE*GD(I)
   70 S(I)=GC(I)+TEMP*GD(I)
C
C     Begin the iteration by overwriting S with a vector that has the
C     required length and direction, except that termination occurs if
C     the given D and S are nearly parallel.
C
   80 ITERC=ITERC+1
      DD=ZERO
      SP=ZERO
      SS=ZERO
      DO 90 I=1,N
      DD=DD+D(I)**2
      SP=SP+D(I)*S(I)
   90 SS=SS+S(I)**2
      TEMP=DD*SS-SP*SP
      IF (TEMP .LE. 1.0D-8*DD*SS) GOTO 160
      DENOM=DSQRT(TEMP)
      DO 100 I=1,N
      S(I)=(DD*S(I)-SP*D(I))/DENOM
  100 W(I)=ZERO
C
C     Calculate the coefficients of the objective function on the circle,
C     beginning with the multiplication of S by the second derivative matrix.
C
      DO 120 K=1,NPT
      SUM=ZERO
      DO 110 J=1,N
  110 SUM=SUM+XPT(K,J)*S(J)
      SUM=HCOL(K)*SUM
      DO 120 I=1,N
  120 W(I)=W(I)+SUM*XPT(K,I)
      CF1=ZERO
      CF2=ZERO
      CF3=ZERO
      CF4=ZERO
      CF5=ZERO
      DO 130 I=1,N
      CF1=CF1+S(I)*W(I)
      CF2=CF2+D(I)*GC(I)
      CF3=CF3+S(I)*GC(I)
      CF4=CF4+D(I)*GD(I)
  130 CF5=CF5+S(I)*GD(I)
      CF1=HALF*CF1
      CF4=HALF*CF4-CF1
C
C     Seek the value of the angle that maximizes the modulus of TAU.
C
      TAUBEG=CF1+CF2+CF4
      TAUMAX=TAUBEG
      TAUOLD=TAUBEG
      ISAVE=0
      IU=49
      TEMP=TWOPI/DFLOAT(IU+1)
      DO 140 I=1,IU
      ANGLE=DFLOAT(I)*TEMP
      CTH=DCOS(ANGLE)
      STH=DSIN(ANGLE)
      TAU=CF1+(CF2+CF4*CTH)*CTH+(CF3+CF5*CTH)*STH
      IF (DABS(TAU) .GT. DABS(TAUMAX)) THEN
          TAUMAX=TAU
          ISAVE=I
          TEMPA=TAUOLD
      ELSE IF (I .EQ. ISAVE+1) THEN
          TEMPB=TAU
      END IF
  140 TAUOLD=TAU
      IF (ISAVE .EQ. 0) TEMPA=TAU
      IF (ISAVE .EQ. IU) TEMPB=TAUBEG
      STEP=ZERO
      IF (TEMPA .NE. TEMPB) THEN
          TEMPA=TEMPA-TAUMAX
          TEMPB=TEMPB-TAUMAX
          STEP=HALF*(TEMPA-TEMPB)/(TEMPA+TEMPB)
      END IF
      ANGLE=TEMP*(DFLOAT(ISAVE)+STEP)
C
C     Calculate the new D and GD. Then test for convergence.
C
      CTH=DCOS(ANGLE)
      STH=DSIN(ANGLE)
      TAU=CF1+(CF2+CF4*CTH)*CTH+(CF3+CF5*CTH)*STH
      DO 150 I=1,N
      D(I)=CTH*D(I)+STH*S(I)
      GD(I)=CTH*GD(I)+STH*W(I)
  150 S(I)=GC(I)+GD(I)
      IF (DABS(TAU) .LE. 1.1D0*DABS(TAUBEG)) GOTO 160
      IF (ITERC .LT. N) GOTO 80
  160 RETURN
      END 
      FUNCTION NEWUOA (N,NPT,X,RHOBEG,RHOEND,IPRINT,MAXFUN,W,IWF,
     1  CALFUN)
      IMPLICIT REAL*8 (A-H,O-Z)
      DIMENSION X(*),W(*),IWF(*)
      EXTERNAL CALFUN
      real*8 NEWUOB, NEWUOA
C
C     This subroutine seeks the least value of a function of many variables,
C     by a trust region method that forms quadratic models by interpolation.
C     There can be some freedom in the interpolation conditions, which is
C     taken up by minimizing the Frobenius norm of the change to the second
C     derivative of the quadratic model, beginning with a zero matrix. The
C     arguments of the subroutine are as follows.
C
C     N must be set to the number of variables and must be at least two.
C     NPT is the number of interpolation conditions. Its value must be in the
C       interval [N+2,(N+1)(N+2)/2].
C     Initial values of the variables must be set in X(1),X(2),...,X(N). They
C       will be changed to the values that give the least calculated F.
C     RHOBEG and RHOEND must be set to the initial and final values of a trust
C       region radius, so both must be positive with RHOEND<=RHOBEG. Typically
C       RHOBEG should be about one tenth of the greatest expected change to a
C       variable, and RHOEND should indicate the accuracy that is required in
C       the final values of the variables.
C     The value of IPRINT should be set to 0, 1, 2 or 3, which controls the
C       amount of printing. Specifically, there is no output if IPRINT=0 and
C       there is output only at the return if IPRINT=1. Otherwise, each new
C       value of RHO is printed, with the best vector of variables so far and
C       the corresponding value of the objective function. Further, each new
C       value of F with its variables are output if IPRINT=3.
C     MAXFUN must be set to an upper bound on the number of calls of CALFUN.
C     The array W will be used for working space. Its length must be at least
C     (NPT+13)*(NPT+N)+3*N*(N+3)/2.
C
C     SUBROUTINE CALFUN (N,X,F) must be provided by the user. It must set F to
C     the value of the objective function for the variables X(1),X(2),...,X(N).
C
C     Partition the working space array, so that different parts of it can be
C     treated separately by the subroutine that performs the main calculation.
C
      NP=N+1
      NPTM=NPT-NP
      IF (NPT .LT. N+2 .OR. NPT .GT. ((N+2)*NP)/2) THEN
          PRINT 10
   10     FORMAT (/4X,'Return from NEWUOA because NPT is not in',
     1      ' the required interval')
          GO TO 20
      END IF
      NDIM=NPT+N
      IXB=1
      IXO=IXB+N
      IXN=IXO+N
      IXP=IXN+N
      IFV=IXP+N*NPT
      IGQ=IFV+NPT
      IHQ=IGQ+N
      IPQ=IHQ+(N*NP)/2
      IBMAT=IPQ+NPT
      IZMAT=IBMAT+NDIM*N
      ID=IZMAT+NPT*NPTM
      IVL=ID+N
      IW=IVL+NDIM
C
C     The above settings provide a partition of W for subroutine NEWUOB.
C     The partition requires the first NPT*(NPT+N)+5*N*(N+3)/2 elements of
C     W plus the space that is needed by the last array of NEWUOB.
C
      NEWUOA= NEWUOB (N,NPT,X,RHOBEG,RHOEND,IPRINT,MAXFUN,W(IXB),
     1  W(IXO),W(IXN),W(IXP),W(IFV),W(IGQ),W(IHQ),W(IPQ),W(IBMAT),
     2  W(IZMAT),NDIM,W(ID),W(IVL),W(IW),
     3  IWF, CALFUN)
   20 RETURN
      END 






      FUNCTION NEWUOB (N,NPT,X,RHOBEG,RHOEND,IPRINT,MAXFUN,XBASE,
     1  XOPT,XNEW,XPT,FVAL,GQ,HQ,PQ,BMAT,ZMAT,NDIM,D,VLAG,W,IWF,CALFUN)
      IMPLICIT REAL*8 (A-H,O-Z)
      DIMENSION X(*),XBASE(*),XOPT(*),XNEW(*),XPT(NPT,*),FVAL(*),
     1  GQ(*),HQ(*),PQ(*),BMAT(NDIM,*),ZMAT(NPT,*),D(*),VLAG(*),W(*),
     2  IWF(*)
      EXTERNAL CALFUN
      REAL*8 NEWUOB
C
C     The arguments N, NPT, X, RHOBEG, RHOEND, IPRINT and MAXFUN are identical
C       to the corresponding arguments in SUBROUTINE NEWUOA.
C     XBASE will hold a shift of origin that should reduce the contributions
C       from rounding errors to values of the model and Lagrange functions.
C     XOPT will be set to the displacement from XBASE of the vector of
C       variables that provides the least calculated F so far.
C     XNEW will be set to the displacement from XBASE of the vector of
C       variables for the current calculation of F.
C     XPT will contain the interpolation point coordinates relative to XBASE.
C     FVAL will hold the values of F at the interpolation points.
C     GQ will hold the gradient of the quadratic model at XBASE.
C     HQ will hold the explicit second derivatives of the quadratic model.
C     PQ will contain the parameters of the implicit second derivatives of
C       the quadratic model.
C     BMAT will hold the last N columns of H.
C     ZMAT will hold the factorization of the leading NPT by NPT submatrix of
C       H, this factorization being ZMAT times Diag(DZ) times ZMAT^T, where
C       the elements of DZ are plus or minus one, as specified by IDZ.
C     NDIM is the first dimension of BMAT and has the value NPT+N.
C     D is reserved for trial steps from XOPT.
C     VLAG will contain the values of the Lagrange functions at a new point X.
C       They are part of a product that requires VLAG to be of length NDIM.
C     The array W will be used for working space. Its length must be at least
C       10*NDIM = 10*(NPT+N).
C
C     Set some constants.
C
      HALF=0.5D0
      ONE=1.0D0
      TENTH=0.1D0
      ZERO=0.0D0
      NP=N+1
      NH=(N*NP)/2
      NPTM=NPT-NP
      NFTEST=MAX0(MAXFUN,1)
C
C     Set the initial elements of XPT, BMAT, HQ, PQ and ZMAT to zero.
C
      DO 20 J=1,N
      XBASE(J)=X(J)
      DO 10 K=1,NPT
   10 XPT(K,J)=ZERO
      DO 20 I=1,NDIM
   20 BMAT(I,J)=ZERO
      DO 30 IH=1,NH
   30 HQ(IH)=ZERO
      DO 40 K=1,NPT
      PQ(K)=ZERO
      DO 40 J=1,NPTM
   40 ZMAT(K,J)=ZERO
C
C     Begin the initialization procedure. NF becomes one more than the number
C     of function values so far. The coordinates of the displacement of the
C     next initial interpolation point from XBASE are set in XPT(NF,.).
C
      RHOSQ=RHOBEG*RHOBEG
      RECIP=ONE/RHOSQ
      RECIQ=DSQRT(HALF)/RHOSQ
      NF=0
   50 NFM=NF
      NFMM=NF-N
      NF=NF+1
      IF (NFM .LE. 2*N) THEN
          IF (NFM .GE. 1 .AND. NFM .LE. N) THEN
              XPT(NF,NFM)=RHOBEG
          ELSE IF (NFM .GT. N) THEN
              XPT(NF,NFMM)=-RHOBEG
          END IF
      ELSE
          ITEMP=(NFMM-1)/N
          JPT=NFM-ITEMP*N-N
          IPT=JPT+ITEMP
          IF (IPT .GT. N) THEN
              ITEMP=JPT
              JPT=IPT-N
              IPT=ITEMP
          END IF
          XIPT=RHOBEG
          IF (FVAL(IPT+NP) .LT. FVAL(IPT+1)) XIPT=-XIPT
          XJPT=RHOBEG
          IF (FVAL(JPT+NP) .LT. FVAL(JPT+1)) XJPT=-XJPT
          XPT(NF,IPT)=XIPT
          XPT(NF,JPT)=XJPT
      END IF
C
C     Calculate the next value of F, label 70 being reached immediately
C     after this calculation. The least function value so far and its index
C     are required.
C
      DO 60 J=1,N
   60 X(J)=XPT(NF,J)+XBASE(J)
      GOTO 310
   70 FVAL(NF)=F
      IF (NF .EQ. 1) THEN
          FBEG=F
          FOPT=F
          KOPT=1
      ELSE IF (F .LT. FOPT) THEN
          FOPT=F
          KOPT=NF
      END IF
C
C     Set the nonzero initial elements of BMAT and the quadratic model in
C     the cases when NF is at most 2*N+1.
C
      IF (NFM .LE. 2*N) THEN
          IF (NFM .GE. 1 .AND. NFM .LE. N) THEN
              GQ(NFM)=(F-FBEG)/RHOBEG
              IF (NPT .LT. NF+N) THEN
                  BMAT(1,NFM)=-ONE/RHOBEG
                  BMAT(NF,NFM)=ONE/RHOBEG
                  BMAT(NPT+NFM,NFM)=-HALF*RHOSQ
              END IF
          ELSE IF (NFM .GT. N) THEN
              BMAT(NF-N,NFMM)=HALF/RHOBEG
              BMAT(NF,NFMM)=-HALF/RHOBEG
              ZMAT(1,NFMM)=-RECIQ-RECIQ
              ZMAT(NF-N,NFMM)=RECIQ
              ZMAT(NF,NFMM)=RECIQ
              IH=(NFMM*(NFMM+1))/2
              TEMP=(FBEG-F)/RHOBEG
              HQ(IH)=(GQ(NFMM)-TEMP)/RHOBEG
              GQ(NFMM)=HALF*(GQ(NFMM)+TEMP)
          END IF
C
C     Set the off-diagonal second derivatives of the Lagrange functions and
C     the initial quadratic model.
C
      ELSE
          IH=(IPT*(IPT-1))/2+JPT
          IF (XIPT .LT. ZERO) IPT=IPT+N
          IF (XJPT .LT. ZERO) JPT=JPT+N
          ZMAT(1,NFMM)=RECIP
          ZMAT(NF,NFMM)=RECIP
          ZMAT(IPT+1,NFMM)=-RECIP
          ZMAT(JPT+1,NFMM)=-RECIP
          HQ(IH)=(FBEG-FVAL(IPT+1)-FVAL(JPT+1)+F)/(XIPT*XJPT)
      END IF
      IF (NF .LT. NPT) GOTO 50
C
C     Begin the iterative procedure, because the initial model is complete.
C
      RHO=RHOBEG
      DELTA=RHO
      IDZ=1
      DIFFA=ZERO
      DIFFB=ZERO
      ITEST=0
      XOPTSQ=ZERO
      DO 80 I=1,N
      XOPT(I)=XPT(KOPT,I)
   80 XOPTSQ=XOPTSQ+XOPT(I)**2
   90 NFSAV=NF
C
C     Generate the next trust region step and test its length. Set KNEW
C     to -1 if the purpose of the next F will be to improve the model.
C
  100 KNEW=0
      CALL TRSAPP (N,NPT,XOPT,XPT,GQ,HQ,PQ,DELTA,D,W,W(NP),
     1  W(NP+N),W(NP+2*N),CRVMIN)
      DSQ=ZERO
      DO 110 I=1,N
  110 DSQ=DSQ+D(I)**2
      DNORM=DMIN1(DELTA,DSQRT(DSQ))
      IF (DNORM .LT. HALF*RHO) THEN
          KNEW=-1
          DELTA=TENTH*DELTA
          RATIO=-1.0D0
          IF (DELTA .LE. 1.5D0*RHO) DELTA=RHO
          IF (NF .LE. NFSAV+2) GOTO 460
          TEMP=0.125D0*CRVMIN*RHO*RHO
          IF (TEMP .LE. DMAX1(DIFFA,DIFFB,DIFFC)) GOTO 460
          GOTO 490
      END IF
C
C     Shift XBASE if XOPT may be too far from XBASE. First make the changes
C     to BMAT that do not depend on ZMAT.
C
  120 IF (DSQ .LE. 1.0D-3*XOPTSQ) THEN
          TEMPQ=0.25D0*XOPTSQ
          DO 140 K=1,NPT
          SUM=ZERO
          DO 130 I=1,N
  130     SUM=SUM+XPT(K,I)*XOPT(I)
          TEMP=PQ(K)*SUM
          SUM=SUM-HALF*XOPTSQ
          W(NPT+K)=SUM
          DO 140 I=1,N
          GQ(I)=GQ(I)+TEMP*XPT(K,I)
          XPT(K,I)=XPT(K,I)-HALF*XOPT(I)
          VLAG(I)=BMAT(K,I)
          W(I)=SUM*XPT(K,I)+TEMPQ*XOPT(I)
          IP=NPT+I
          DO 140 J=1,I
  140     BMAT(IP,J)=BMAT(IP,J)+VLAG(I)*W(J)+W(I)*VLAG(J)
C
C     Then the revisions of BMAT that depend on ZMAT are calculated.
C
          DO 180 K=1,NPTM
          SUMZ=ZERO
          DO 150 I=1,NPT
          SUMZ=SUMZ+ZMAT(I,K)
  150     W(I)=W(NPT+I)*ZMAT(I,K)
          DO 170 J=1,N
          SUM=TEMPQ*SUMZ*XOPT(J)
          DO 160 I=1,NPT
  160     SUM=SUM+W(I)*XPT(I,J)
          VLAG(J)=SUM
          IF (K .LT. IDZ) SUM=-SUM
          DO 170 I=1,NPT
  170     BMAT(I,J)=BMAT(I,J)+SUM*ZMAT(I,K)
          DO 180 I=1,N
          IP=I+NPT
          TEMP=VLAG(I)
          IF (K .LT. IDZ) TEMP=-TEMP
          DO 180 J=1,I
  180     BMAT(IP,J)=BMAT(IP,J)+TEMP*VLAG(J)
C
C     The following instructions complete the shift of XBASE, including
C     the changes to the parameters of the quadratic model.
C
          IH=0
          DO 200 J=1,N
          W(J)=ZERO
          DO 190 K=1,NPT
          W(J)=W(J)+PQ(K)*XPT(K,J)
  190     XPT(K,J)=XPT(K,J)-HALF*XOPT(J)
          DO 200 I=1,J
          IH=IH+1
          IF (I .LT. J) GQ(J)=GQ(J)+HQ(IH)*XOPT(I)
          GQ(I)=GQ(I)+HQ(IH)*XOPT(J)
          HQ(IH)=HQ(IH)+W(I)*XOPT(J)+XOPT(I)*W(J)
  200     BMAT(NPT+I,J)=BMAT(NPT+J,I)
          DO 210 J=1,N
          XBASE(J)=XBASE(J)+XOPT(J)
  210     XOPT(J)=ZERO
          XOPTSQ=ZERO
      END IF
C
C     Pick the model step if KNEW is positive. A different choice of D
C     may be made later, if the choice of D by BIGLAG causes substantial
C     cancellation in DENOM.
C
      IF (KNEW .GT. 0) THEN
          CALL BIGLAG (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KNEW,DSTEP,
     1      D,ALPHA,VLAG,VLAG(NPT+1),W,W(NP),W(NP+N))
      END IF
C
C     Calculate VLAG and BETA for the current choice of D. The first NPT
C     components of W_check will be held in W.
C
      DO 230 K=1,NPT
      SUMA=ZERO
      SUMB=ZERO
      SUM=ZERO
      DO 220 J=1,N
      SUMA=SUMA+XPT(K,J)*D(J)
      SUMB=SUMB+XPT(K,J)*XOPT(J)
  220 SUM=SUM+BMAT(K,J)*D(J)
      W(K)=SUMA*(HALF*SUMA+SUMB)
  230 VLAG(K)=SUM
      BETA=ZERO
      DO 250 K=1,NPTM
      SUM=ZERO
      DO 240 I=1,NPT
  240 SUM=SUM+ZMAT(I,K)*W(I)
      IF (K .LT. IDZ) THEN
          BETA=BETA+SUM*SUM
          SUM=-SUM
      ELSE
          BETA=BETA-SUM*SUM
      END IF
      DO 250 I=1,NPT
  250 VLAG(I)=VLAG(I)+SUM*ZMAT(I,K)
      BSUM=ZERO
      DX=ZERO
      DO 280 J=1,N
      SUM=ZERO
      DO 260 I=1,NPT
  260 SUM=SUM+W(I)*BMAT(I,J)
      BSUM=BSUM+SUM*D(J)
      JP=NPT+J
      DO 270 K=1,N
  270 SUM=SUM+BMAT(JP,K)*D(K)
      VLAG(JP)=SUM
      BSUM=BSUM+SUM*D(J)
  280 DX=DX+D(J)*XOPT(J)
      BETA=DX*DX+DSQ*(XOPTSQ+DX+DX+HALF*DSQ)+BETA-BSUM
      VLAG(KOPT)=VLAG(KOPT)+ONE
C
C     If KNEW is positive and if the cancellation in DENOM is unacceptable,
C     then BIGDEN calculates an alternative model step, XNEW being used for
C     working space.
C
      IF (KNEW .GT. 0) THEN
          TEMP=ONE+ALPHA*BETA/VLAG(KNEW)**2
          IF (DABS(TEMP) .LE. 0.8D0) THEN
              CALL BIGDEN (N,NPT,XOPT,XPT,BMAT,ZMAT,IDZ,NDIM,KOPT,
     1          KNEW,D,W,VLAG,BETA,XNEW,W(NDIM+1),W(6*NDIM+1))
          END IF
      END IF
C
C     Calculate the next value of the objective function.
C
  290 DO 300 I=1,N
      XNEW(I)=XOPT(I)+D(I)
  300 X(I)=XBASE(I)+XNEW(I)
      NF=NF+1
  310 IF (NF .GT. NFTEST) THEN
          NF=NF-1
          IF (IPRINT .GT. 0) PRINT 320
  320     FORMAT (/4X,'Return from NEWUOA because CALFUN has been',
     1      ' called MAXFUN times.')
          GOTO 530
      END IF
      CALL CALFUN (N,X,F,IWF)
      IF (IPRINT .EQ. 3) THEN
          PRINT 330, NF,F,(X(I),I=1,N)
  330      FORMAT (/4X,'Function number',I6,'    F =',1PD18.10,
     1       '    The corresponding X is:'/(2X,5D15.6))
      END IF
      IF (NF .LE. NPT) GOTO 70
      IF (KNEW .EQ. -1) GOTO 530
C
C     Use the quadratic model to predict the change in F due to the step D,
C     and set DIFF to the error of this prediction.
C
      VQUAD=ZERO
      IH=0
      DO 340 J=1,N
      VQUAD=VQUAD+D(J)*GQ(J)
      DO 340 I=1,J
      IH=IH+1
      TEMP=D(I)*XNEW(J)+D(J)*XOPT(I)
      IF (I .EQ. J) TEMP=HALF*TEMP
  340 VQUAD=VQUAD+TEMP*HQ(IH)
      DO 350 K=1,NPT
  350 VQUAD=VQUAD+PQ(K)*W(K)
      DIFF=F-FOPT-VQUAD
      DIFFC=DIFFB
      DIFFB=DIFFA
      DIFFA=DABS(DIFF)
      IF (DNORM .GT. RHO) NFSAV=NF
C
C     Update FOPT and XOPT if the new F is the least value of the objective
C     function so far. The branch when KNEW is positive occurs if D is not
C     a trust region step.
C
      FSAVE=FOPT
      IF (F .LT. FOPT) THEN
          FOPT=F
          XOPTSQ=ZERO
          DO 360 I=1,N
          XOPT(I)=XNEW(I)
  360     XOPTSQ=XOPTSQ+XOPT(I)**2
      END IF
      KSAVE=KNEW
      IF (KNEW .GT. 0) GOTO 410
C
C     Pick the next value of DELTA after a trust region step.
C
      IF (VQUAD .GE. ZERO) THEN
          IF (IPRINT .GT. 0) PRINT 370
  370     FORMAT (/4X,'Return from NEWUOA because a trust',
     1      ' region step has failed to reduce Q.')
          GOTO 530
      END IF
      RATIO=(F-FSAVE)/VQUAD
      IF (RATIO .LE. TENTH) THEN
          DELTA=HALF*DNORM
      ELSE IF (RATIO. LE. 0.7D0) THEN
          DELTA=DMAX1(HALF*DELTA,DNORM)
      ELSE
          DELTA=DMAX1(HALF*DELTA,DNORM+DNORM)
      END IF
      IF (DELTA .LE. 1.5D0*RHO) DELTA=RHO
C
C     Set KNEW to the index of the next interpolation point to be deleted.
C
      RHOSQ=DMAX1(TENTH*DELTA,RHO)**2
      KTEMP=0
      DETRAT=ZERO
      IF (F .GE. FSAVE) THEN
          KTEMP=KOPT
          DETRAT=ONE
      END IF
      DO 400 K=1,NPT
      HDIAG=ZERO
      DO 380 J=1,NPTM
      TEMP=ONE
      IF (J .LT. IDZ) TEMP=-ONE
  380 HDIAG=HDIAG+TEMP*ZMAT(K,J)**2
      TEMP=DABS(BETA*HDIAG+VLAG(K)**2)
      DISTSQ=ZERO
      DO 390 J=1,N
  390 DISTSQ=DISTSQ+(XPT(K,J)-XOPT(J))**2
      IF (DISTSQ .GT. RHOSQ) TEMP=TEMP*(DISTSQ/RHOSQ)**3
      IF (TEMP .GT. DETRAT .AND. K .NE. KTEMP) THEN
          DETRAT=TEMP
          KNEW=K
      END IF
  400 CONTINUE
      IF (KNEW .EQ. 0) GOTO 460
C
C     Update BMAT, ZMAT and IDZ, so that the KNEW-th interpolation point
C     can be moved. Begin the updating of the quadratic model, starting
C     with the explicit second derivative term.
C
  410 CALL UPDATE (N,NPT,BMAT,ZMAT,IDZ,NDIM,VLAG,BETA,KNEW,W)
      FVAL(KNEW)=F
      IH=0
      DO 420 I=1,N
      TEMP=PQ(KNEW)*XPT(KNEW,I)
      DO 420 J=1,I
      IH=IH+1
  420 HQ(IH)=HQ(IH)+TEMP*XPT(KNEW,J)
      PQ(KNEW)=ZERO
C
C     Update the other second derivative parameters, and then the gradient
C     vector of the model. Also include the new interpolation point.
C
      DO 440 J=1,NPTM
      TEMP=DIFF*ZMAT(KNEW,J)
      IF (J .LT. IDZ) TEMP=-TEMP
      DO 440 K=1,NPT
  440 PQ(K)=PQ(K)+TEMP*ZMAT(K,J)
      GQSQ=ZERO
      DO 450 I=1,N
      GQ(I)=GQ(I)+DIFF*BMAT(KNEW,I)
      GQSQ=GQSQ+GQ(I)**2
  450 XPT(KNEW,I)=XNEW(I)
C
C     If a trust region step makes a small change to the objective function,
C     then calculate the gradient of the least Frobenius norm interpolant at
C     XBASE, and store it in W, using VLAG for a vector of right hand sides.
C
      IF (KSAVE .EQ. 0 .AND. DELTA .EQ. RHO) THEN
          IF (DABS(RATIO) .GT. 1.0D-2) THEN
              ITEST=0
          ELSE
              DO 700 K=1,NPT
  700         VLAG(K)=FVAL(K)-FVAL(KOPT)
              GISQ=ZERO
              DO 720 I=1,N
              SUM=ZERO
              DO 710 K=1,NPT
  710         SUM=SUM+BMAT(K,I)*VLAG(K)
              GISQ=GISQ+SUM*SUM
  720         W(I)=SUM
C
C     Test whether to replace the new quadratic model by the least Frobenius
C     norm interpolant, making the replacement if the test is satisfied.
C
              ITEST=ITEST+1
              IF (GQSQ .LT. 1.0D2*GISQ) ITEST=0
              IF (ITEST .GE. 3) THEN
                  DO 730 I=1,N
  730             GQ(I)=W(I)
                  DO 740 IH=1,NH
  740             HQ(IH)=ZERO
                  DO 760 J=1,NPTM
                  W(J)=ZERO
                  DO 750 K=1,NPT
  750             W(J)=W(J)+VLAG(K)*ZMAT(K,J)
  760             IF (J .LT. IDZ) W(J)=-W(J)
                  DO 770 K=1,NPT
                  PQ(K)=ZERO
                  DO 770 J=1,NPTM
  770             PQ(K)=PQ(K)+ZMAT(K,J)*W(J)
                  ITEST=0
              END IF
          END IF
      END IF
      IF (F .LT. FSAVE) KOPT=KNEW
C
C     If a trust region step has provided a sufficient decrease in F, then
C     branch for another trust region calculation. The case KSAVE>0 occurs
C     when the new function value was calculated by a model step.
C
      IF (F .LE. FSAVE+TENTH*VQUAD) GOTO 100
      IF (KSAVE .GT. 0) GOTO 100
C
C     Alternatively, find out if the interpolation points are close enough
C     to the best point so far.
C
      KNEW=0
  460 DISTSQ=4.0D0*DELTA*DELTA
      DO 480 K=1,NPT
      SUM=ZERO
      DO 470 J=1,N
  470 SUM=SUM+(XPT(K,J)-XOPT(J))**2
      IF (SUM .GT. DISTSQ) THEN
          KNEW=K
          DISTSQ=SUM
      END IF
  480 CONTINUE
C
C     If KNEW is positive, then set DSTEP, and branch back for the next
C     iteration, which will generate a "model step".
C
      IF (KNEW .GT. 0) THEN
          DSTEP=DMAX1(DMIN1(TENTH*DSQRT(DISTSQ),HALF*DELTA),RHO)
          DSQ=DSTEP*DSTEP
          GOTO 120
      END IF
      IF (RATIO .GT. ZERO) GOTO 100
      IF (DMAX1(DELTA,DNORM) .GT. RHO) GOTO 100
C
C     The calculations with the current value of RHO are complete. Pick the
C     next values of RHO and DELTA.
C
  490 IF (RHO .GT. RHOEND) THEN
          DELTA=HALF*RHO
          RATIO=RHO/RHOEND
          IF (RATIO .LE. 16.0D0) THEN
              RHO=RHOEND
          ELSE IF (RATIO .LE. 250.0D0) THEN
              RHO=DSQRT(RATIO)*RHOEND
          ELSE
              RHO=TENTH*RHO
          END IF
          DELTA=DMAX1(DELTA,RHO)
          IF (IPRINT .GE. 2) THEN
              IF (IPRINT .GE. 3) PRINT 500
  500         FORMAT (5X)
              PRINT 510, RHO,NF
  510         FORMAT (/4X,'New RHO =',1PD11.4,5X,'Number of',
     1          ' function values =',I6)
              PRINT 520, FOPT,(XBASE(I)+XOPT(I),I=1,N)
  520         FORMAT (4X,'Least value of F =',1PD23.15,9X,
     1          'The corresponding X is:'/(2X,5D15.6))
          END IF
          GOTO 90
      END IF
C
C     Return from the calculation, after another Newton-Raphson step, if
C     it is too short to have been tried before.
C
      IF (KNEW .EQ. -1) GOTO 290
  530 IF (FOPT .LE. F) THEN
          DO 540 I=1,N
  540     X(I)=XBASE(I)+XOPT(I)
          F=FOPT
      END IF
      IF (IPRINT .GE. 1) THEN
          PRINT 550, NF
  550     FORMAT (/4X,'At the return from NEWUOA',5X,
     1      'Number of function values =',I6)
          PRINT 520, F,(X(I),I=1,N)
      END IF
      NEWUOB =F
      RETURN 
      END 
      SUBROUTINE TRSAPP (N,NPT,XOPT,XPT,GQ,HQ,PQ,DELTA,STEP,
     1  D,G,HD,HS,CRVMIN)
      IMPLICIT REAL*8 (A-H,O-Z)
      DIMENSION XOPT(*),XPT(NPT,*),GQ(*),HQ(*),PQ(*),STEP(*),
     1  D(*),G(*),HD(*),HS(*)
C
C     N is the number of variables of a quadratic objective function, Q say.
C     The arguments NPT, XOPT, XPT, GQ, HQ and PQ have their usual meanings,
C       in order to define the current quadratic model Q.
C     DELTA is the trust region radius, and has to be positive.
C     STEP will be set to the calculated trial step.
C     The arrays D, G, HD and HS will be used for working space.
C     CRVMIN will be set to the least curvature of H along the conjugate
C       directions that occur, except that it is set to zero if STEP goes
C       all the way to the trust region boundary.
C
C     The calculation of STEP begins with the truncated conjugate gradient
C     method. If the boundary of the trust region is reached, then further
C     changes to STEP may be made, each one being in the 2D space spanned
C     by the current STEP and the corresponding gradient of Q. Thus STEP
C     should provide a substantial reduction to Q within the trust region.
C
C     Initialization, which includes setting HD to H times XOPT.
C
      HALF=0.5D0
      ZERO=0.0D0
      TWOPI=8.0D0*DATAN(1.0D0)
      DELSQ=DELTA*DELTA
      ITERC=0
      ITERMAX=N
      ITERSW=ITERMAX
      DO 10 I=1,N
   10 D(I)=XOPT(I)
      GOTO 170
C
C     Prepare for the first line search.
C
   20 QRED=ZERO
      DD=ZERO
      DO 30 I=1,N
      STEP(I)=ZERO
      HS(I)=ZERO
      G(I)=GQ(I)+HD(I)
      D(I)=-G(I)
   30 DD=DD+D(I)**2
      CRVMIN=ZERO
      IF (DD .EQ. ZERO) GOTO 160
      DS=ZERO
      SS=ZERO
      GG=DD
      GGBEG=GG
C
C     Calculate the step to the trust region boundary and the product HD.
C
   40 ITERC=ITERC+1
      TEMP=DELSQ-SS
      BSTEP=TEMP/(DS+DSQRT(DS*DS+DD*TEMP))
      GOTO 170
   50 DHD=ZERO
      DO 60 J=1,N
   60 DHD=DHD+D(J)*HD(J)
C
C     Update CRVMIN and set the step-length ALPHA.
C
      ALPHA=BSTEP
      IF (DHD .GT. ZERO) THEN
          TEMP=DHD/DD
          IF (ITERC .EQ. 1) CRVMIN=TEMP
          CRVMIN=DMIN1(CRVMIN,TEMP)
          ALPHA=DMIN1(ALPHA,GG/DHD)
      END IF
      QADD=ALPHA*(GG-HALF*ALPHA*DHD)
      QRED=QRED+QADD
C
C     Update STEP and HS.
C
      GGSAV=GG
      GG=ZERO
      DO 70 I=1,N
      STEP(I)=STEP(I)+ALPHA*D(I)
      HS(I)=HS(I)+ALPHA*HD(I)
   70 GG=GG+(G(I)+HS(I))**2
C
C     Begin another conjugate direction iteration if required.
C
      IF (ALPHA .LT. BSTEP) THEN
          IF (QADD .LE. 0.01D0*QRED) GOTO 160
          IF (GG .LE. 1.0D-4*GGBEG) GOTO 160
          IF (ITERC .EQ. ITERMAX) GOTO 160
          TEMP=GG/GGSAV
          DD=ZERO
          DS=ZERO
          SS=ZERO
          DO 80 I=1,N
          D(I)=TEMP*D(I)-G(I)-HS(I)
          DD=DD+D(I)**2
          DS=DS+D(I)*STEP(I)
   80     SS=SS+STEP(I)**2
          IF (DS .LE. ZERO) GOTO 160
          IF (SS .LT. DELSQ) GOTO 40
      END IF
      CRVMIN=ZERO
      ITERSW=ITERC
C
C     Test whether an alternative iteration is required.
C
   90 IF (GG .LE. 1.0D-4*GGBEG) GOTO 160
      SG=ZERO
      SHS=ZERO
      DO 100 I=1,N
      SG=SG+STEP(I)*G(I)
  100 SHS=SHS+STEP(I)*HS(I)
      SGK=SG+SHS
      ANGTEST=SGK/DSQRT(GG*DELSQ)
      IF (ANGTEST .LE. -0.99D0) GOTO 160
C
C     Begin the alternative iteration by calculating D and HD and some
C     scalar products.
C
      ITERC=ITERC+1
      TEMP=DSQRT(DELSQ*GG-SGK*SGK)
      TEMPA=DELSQ/TEMP
      TEMPB=SGK/TEMP
      DO 110 I=1,N
  110 D(I)=TEMPA*(G(I)+HS(I))-TEMPB*STEP(I)
      GOTO 170
  120 DG=ZERO
      DHD=ZERO
      DHS=ZERO
      DO 130 I=1,N
      DG=DG+D(I)*G(I)
      DHD=DHD+HD(I)*D(I)
  130 DHS=DHS+HD(I)*STEP(I)
C
C     Seek the value of the angle that minimizes Q.
C
      CF=HALF*(SHS-DHD)
      QBEG=SG+CF
      QSAV=QBEG
      QMIN=QBEG
      ISAVE=0
      IU=49
      TEMP=TWOPI/DFLOAT(IU+1)
      DO 140 I=1,IU
      ANGLE=DFLOAT(I)*TEMP
      CTH=DCOS(ANGLE)
      STH=DSIN(ANGLE)
      QNEW=(SG+CF*CTH)*CTH+(DG+DHS*CTH)*STH
      IF (QNEW .LT. QMIN) THEN
          QMIN=QNEW
          ISAVE=I
          TEMPA=QSAV
      ELSE IF (I .EQ. ISAVE+1) THEN
          TEMPB=QNEW
      END IF
  140 QSAV=QNEW
      IF (ISAVE .EQ. ZERO) TEMPA=QNEW
      IF (ISAVE .EQ. IU) TEMPB=QBEG
      ANGLE=ZERO
      IF (TEMPA .NE. TEMPB) THEN
          TEMPA=TEMPA-QMIN
          TEMPB=TEMPB-QMIN
          ANGLE=HALF*(TEMPA-TEMPB)/(TEMPA+TEMPB)
      END IF
      ANGLE=TEMP*(DFLOAT(ISAVE)+ANGLE)
C
C     Calculate the new STEP and HS. Then test for convergence.
C
      CTH=DCOS(ANGLE)
      STH=DSIN(ANGLE)
      REDUC=QBEG-(SG+CF*CTH)*CTH-(DG+DHS*CTH)*STH
      GG=ZERO
      DO 150 I=1,N
      STEP(I)=CTH*STEP(I)+STH*D(I)
      HS(I)=CTH*HS(I)+STH*HD(I)
  150 GG=GG+(G(I)+HS(I))**2
      QRED=QRED+REDUC
      RATIO=REDUC/QRED
      IF (ITERC .LT. ITERMAX .AND. RATIO .GT. 0.01D0) GOTO 90
  160 RETURN
C
C     The following instructions act as a subroutine for setting the vector
C     HD to the vector D multiplied by the second derivative matrix of Q.
C     They are called from three different places, which are distinguished
C     by the value of ITERC.
C
  170 DO 180 I=1,N
  180 HD(I)=ZERO
      DO 200 K=1,NPT
      TEMP=ZERO
      DO 190 J=1,N
  190 TEMP=TEMP+XPT(K,J)*D(J)
      TEMP=TEMP*PQ(K)
      DO 200 I=1,N
  200 HD(I)=HD(I)+TEMP*XPT(K,I)
      IH=0
      DO 210 J=1,N
      DO 210 I=1,J
      IH=IH+1
      IF (I .LT. J) HD(J)=HD(J)+HQ(IH)*D(I)
  210 HD(I)=HD(I)+HQ(IH)*D(J)
      IF (ITERC .EQ. 0) GOTO 20
      IF (ITERC .LE. ITERSW) GOTO 50
      GOTO 120
      END

      SUBROUTINE UPDATE (N,NPT,BMAT,ZMAT,IDZ,NDIM,VLAG,BETA,KNEW,W)
      IMPLICIT REAL*8 (A-H,O-Z)
      DIMENSION BMAT(NDIM,*),ZMAT(NPT,*),VLAG(*),W(*)
C
C     The arrays BMAT and ZMAT with IDZ are updated, in order to shift the
C     interpolation point that has index KNEW. On entry, VLAG contains the
C     components of the vector Theta*Wcheck+e_b of the updating formula
C     (6.11), and BETA holds the value of the parameter that has this name.
C     The vector W is used for working space.
C
C     Set some constants.
C
      ONE=1.0D0
      ZERO=0.0D0
      NPTM=NPT-N-1
C
C     Apply the rotations that put zeros in the KNEW-th row of ZMAT.
C
      JL=1
      DO 20 J=2,NPTM
      IF (J .EQ. IDZ) THEN
          JL=IDZ
      ELSE IF (ZMAT(KNEW,J) .NE. ZERO) THEN
          TEMP=DSQRT(ZMAT(KNEW,JL)**2+ZMAT(KNEW,J)**2)
          TEMPA=ZMAT(KNEW,JL)/TEMP
          TEMPB=ZMAT(KNEW,J)/TEMP
          DO 10 I=1,NPT
          TEMP=TEMPA*ZMAT(I,JL)+TEMPB*ZMAT(I,J)
          ZMAT(I,J)=TEMPA*ZMAT(I,J)-TEMPB*ZMAT(I,JL)
   10     ZMAT(I,JL)=TEMP
          ZMAT(KNEW,J)=ZERO
      END IF
   20 CONTINUE
C
C     Put the first NPT components of the KNEW-th column of HLAG into W,
C     and calculate the parameters of the updating formula.
C
      TEMPA=ZMAT(KNEW,1)
      IF (IDZ .GE. 2) TEMPA=-TEMPA
      IF (JL .GT. 1) TEMPB=ZMAT(KNEW,JL)
      DO 30 I=1,NPT
      W(I)=TEMPA*ZMAT(I,1)
      IF (JL .GT. 1) W(I)=W(I)+TEMPB*ZMAT(I,JL)
   30 CONTINUE
      ALPHA=W(KNEW)
      TAU=VLAG(KNEW)
      TAUSQ=TAU*TAU
      DENOM=ALPHA*BETA+TAUSQ
      VLAG(KNEW)=VLAG(KNEW)-ONE
C
C     Complete the updating of ZMAT when there is only one nonzero element
C     in the KNEW-th row of the new matrix ZMAT, but, if IFLAG is set to one,
C     then the first column of ZMAT will be exchanged with another one later.
C
      IFLAG=0
      IF (JL .EQ. 1) THEN
          TEMP=DSQRT(DABS(DENOM))
          TEMPB=TEMPA/TEMP
          TEMPA=TAU/TEMP
          DO 40 I=1,NPT
   40     ZMAT(I,1)=TEMPA*ZMAT(I,1)-TEMPB*VLAG(I)
          IF (IDZ .EQ. 1 .AND. TEMP .LT. ZERO) IDZ=2
          IF (IDZ .GE. 2 .AND. TEMP .GE. ZERO) IFLAG=1
      ELSE
C
C     Complete the updating of ZMAT in the alternative case.
C
          JA=1
          IF (BETA .GE. ZERO) JA=JL
          JB=JL+1-JA
          TEMP=ZMAT(KNEW,JB)/DENOM
          TEMPA=TEMP*BETA
          TEMPB=TEMP*TAU
          TEMP=ZMAT(KNEW,JA)
          SCALA=ONE/DSQRT(DABS(BETA)*TEMP*TEMP+TAUSQ)
          SCALB=SCALA*DSQRT(DABS(DENOM))
          DO 50 I=1,NPT
          ZMAT(I,JA)=SCALA*(TAU*ZMAT(I,JA)-TEMP*VLAG(I))
   50     ZMAT(I,JB)=SCALB*(ZMAT(I,JB)-TEMPA*W(I)-TEMPB*VLAG(I))
          IF (DENOM .LE. ZERO) THEN
              IF (BETA .LT. ZERO) IDZ=IDZ+1
              IF (BETA .GE. ZERO) IFLAG=1
          END IF
      END IF
C
C     IDZ is reduced in the following case, and usually the first column
C     of ZMAT is exchanged with a later one.
C
      IF (IFLAG .EQ. 1) THEN
          IDZ=IDZ-1
          DO 60 I=1,NPT
          TEMP=ZMAT(I,1)
          ZMAT(I,1)=ZMAT(I,IDZ)
   60     ZMAT(I,IDZ)=TEMP
      END IF
C
C     Finally, update the matrix BMAT.
C
      DO 70 J=1,N
      JP=NPT+J
      W(JP)=BMAT(KNEW,J)
      TEMPA=(ALPHA*VLAG(JP)-TAU*W(JP))/DENOM
      TEMPB=(-BETA*W(JP)-TAU*VLAG(JP))/DENOM
      DO 70 I=1,JP
      BMAT(I,J)=BMAT(I,J)+TEMPA*VLAG(I)+TEMPB*W(I)
      IF (I .GT. NPT) BMAT(JP,I-NPT)=BMAT(I,J)
   70 CONTINUE
      RETURN
      END