File: BaseFEMDiscretization.hpp

package info (click to toggle)
freefem3d 1.0pre10-3.4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 25,016 kB
  • ctags: 8,675
  • sloc: cpp: 57,204; sh: 8,788; yacc: 2,975; makefile: 1,149; ansic: 508; perl: 110
file content (249 lines) | stat: -rw-r--r-- 7,320 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//  This file is part of ff3d - http://www.freefem.org/ff3d
//  Copyright (C) 2001, 2002, 2003 Stphane Del Pino

//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2, or (at your option)
//  any later version.

//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.

//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the Free Software Foundation,
//  Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  

//  $Id: BaseFEMDiscretization.hpp,v 1.10 2007/06/07 22:42:02 delpinux Exp $

#ifndef BASE_FEM_DISCRETIZATION_HPP
#define BASE_FEM_DISCRETIZATION_HPP

#include <FiniteElementTraits.hpp>
#include <Discretization.hpp>

#include <DiscretizedOperators.hpp>
#include <DegreeOfFreedomSet.hpp>

#include <PDE.hpp>
#include <PDEProblem.hpp>
#include <MassOperator.hpp>
#include <FirstOrderOperator.hpp>
#include <DivMuGrad.hpp>
#include <SecondOrderOperator.hpp>

#include <VariationalProblem.hpp>

#include <VariationalOperatorFV.hpp>
#include <VariationalOperatorFdxGV.hpp>
#include <VariationalOperatorFdxV.hpp>
#include <VariationalOperatorFgradGgradV.hpp>

#include <ConformTransformation.hpp>

#include <ErrorHandler.hpp>

/**
 * @file   BaseFEMDiscretization.hpp
 * @author Stphane Del Pino
 * @date   Mon Apr 14 00:09:03 2003
 * 
 * @brief  Finite element base class
 * 
 * This class is used to define finite element method standard tools
 * [elementary matrices generation...]. It main purpose is to
 * factorise pieces of code.
 */


template <typename GivenMeshType,
	  DiscretizationType::Type TypeOfDiscretization>
class BaseFEMDiscretization
  : public Discretization
{
protected:
  /// The type of mesh used for discretization
  typedef GivenMeshType MeshType;

  /// The geometry of finite elements
  typedef typename MeshType::CellType CellType;

  /// Finite element type
  typedef typename FiniteElementTraits<CellType,
				       TypeOfDiscretization>::Type FiniteElement;

  /// Elementary matrices type
  typedef typename FiniteElement::ElementaryMatrix ElementaryMatrixType;

  /// Elementary vector type
  typedef typename FiniteElement::ElementaryVector ElementaryVectorType;

  /// type of transformation from reference element
  typedef
  typename FiniteElementTraits<CellType,
			       TypeOfDiscretization>::Transformation
  ConformTransformation;

  /// Associated jacobian
  typedef
  typename FiniteElementTraits<CellType,
			       TypeOfDiscretization>::JacobianTransformation
  JacobianTransformation;

  /// Mesh used to perform discretization
  MeshType& __mesh;

  /// Set of elementary matrices
  mutable ElementaryMatrixSet <ElementaryMatrixType> __eSet;

  /// Operators that are discretized
  mutable DiscretizedOperators<ElementaryMatrixType> __discretizedOperators;

  /// Set of degrees of freedom
  const DegreeOfFreedomSet& __degreeOfFreedomSet;

  /** 
   * Generates elementary vector
   * 
   * @param eVector the generated elementary vector
   * @param J the jacobian of the transformation
   * @param f the function to discretize
   */
  void
  generatesElementaryVector(ElementaryVectorType& eVector,
			    const JacobianTransformation& J,
			    const TinyVector<FiniteElement::numberOfQuadraturePoints,real_t>& f) const
  {
    FiniteElement::instance().integrateWj(eVector,J,f);
  }

  /** 
   * Generates elementary matrices set for a given element
   * 
   * @param eSet the set of elementary matrices
   * @param J the jacobian of the transformation
   */
  void
  generatesElementaryMatrix(ElementaryMatrixSet<ElementaryMatrixType>& eSet,
			    const JacobianTransformation& J) const
  {
    if (eSet.isMassOperator()) {
      generatesElementaryMatrix(PDEOperator::massop,
				J, eSet.massOperator());
    }
    if (eSet.isFirstOrderOperator()) {
      for (size_t i=0; i<3; ++i) {
	if (eSet.isFirstOrderUdxV(i)) {
	  generatesElementaryMatrix(PDEOperator::firstorderopTransposed,
				    J,eSet.firstOrderOperatorUdxV(i),i);
	}
	if (eSet.isFirstOrderDxUV(i)) {
	  generatesElementaryMatrix(PDEOperator::firstorderop, J,
				    eSet.firstOrderOperatorDxUV(i),i);
	}
      }
    }
    if (eSet.isSecondOrderOperator()) {
      for (size_t i=0; i<3; ++i)
	for (size_t j=0; j<3; ++j) {
	  if (eSet.isSecondOrderOperator(i,j)) {
	    generatesElementaryMatrix(PDEOperator::secondorderop, J,
				      eSet.secondOrderOperator(i,j),i,j);
	  }
	}
    }
    if (eSet.isDivMuGrad()) {
      generatesElementaryMatrix(PDEOperator::divmugrad, J, eSet.divMuGrad());
    }
  }

  /** 
   * Generates an elementary matrix for a given operator in an
   * element. The row and column number can be specified when operator
   * is not scalar: \f$ \partial_{x_i}(w_l)\partial_{x_j}(w_k)\f$ for instance.
   * 
   * @param operatorType type of the operator
   * @param J jacobian of the transformation
   * @param matelem generated elementary matrix
   * @param i row number
   * @param j column number
   */
  void
  generatesElementaryMatrix(const PDEOperator::Type operatorType,
			    const JacobianTransformation& J,
			    ElementaryMatrixType& matelem,
			    const size_t i = 0, const size_t j = 0) const
  {
    matelem = 0;
    switch(operatorType) {
    case PDEOperator::firstorderop: {
      FiniteElement::instance().integrateDWjWi(matelem,i,J);
      matelem *= J.jacobianDet();
      break;
    }
    case PDEOperator::firstorderopTransposed: {
      FiniteElement::instance().integrateWjDWi(matelem,i,J);
      matelem *= J.jacobianDet();
      break;
    }
    case PDEOperator::divmugrad: {
      FiniteElement::instance().integrateDWjDWi(matelem,0,0,J);
      FiniteElement::instance().integrateDWjDWi(matelem,1,1,J);
      FiniteElement::instance().integrateDWjDWi(matelem,2,2,J);
      matelem *= J.jacobianDet();
      break;
    }
    case PDEOperator::secondorderop: {
      FiniteElement::instance().integrateDWjDWi(matelem,i,j,J);
      matelem *= J.jacobianDet();
      break;
    }
    case PDEOperator::massop: {
      FiniteElement::instance().integrateWjWi(matelem,J);
      matelem *= J.jacobianDet();
      break;
    }
    default: {
      throw ErrorHandler(__FILE__,__LINE__,
			 "unable to built elementary matrix for this operator",
			 ErrorHandler::unexpected);
    }
    }
  }

  /** 
   * Constructor of the discretization
   * 
   * @param p the problem
   * @param m the mesh used for discretization
   * @param a matrix storing discretization
   * @param bb vector that stores second member discretization
   * @param dof degrees of freedom set
   * 
   */
  BaseFEMDiscretization(const Problem& p,
			MeshType& m,
			BaseMatrix& a,
			BaseVector& bb,
			const DegreeOfFreedomSet& dof)
    : Discretization(Discretization::FEM, p, a, bb),
      __mesh(m),
      __eSet(problem()),
      __discretizedOperators(__eSet,problem()),
      __degreeOfFreedomSet(dof)
  {
    ;
  }

  /** 
   * virtual destructor
   * 
   */
  virtual ~BaseFEMDiscretization()
  {
    ;
  }
};

#endif // BASE_FEM_DISCRETIZATION_HPP