1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
// This file is part of ff3d - http://www.freefem.org/ff3d
// Copyright (C) 2001, 2002, 2003 Stphane Del Pino
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
// $Id: BaseFEMDiscretization.hpp,v 1.10 2007/06/07 22:42:02 delpinux Exp $
#ifndef BASE_FEM_DISCRETIZATION_HPP
#define BASE_FEM_DISCRETIZATION_HPP
#include <FiniteElementTraits.hpp>
#include <Discretization.hpp>
#include <DiscretizedOperators.hpp>
#include <DegreeOfFreedomSet.hpp>
#include <PDE.hpp>
#include <PDEProblem.hpp>
#include <MassOperator.hpp>
#include <FirstOrderOperator.hpp>
#include <DivMuGrad.hpp>
#include <SecondOrderOperator.hpp>
#include <VariationalProblem.hpp>
#include <VariationalOperatorFV.hpp>
#include <VariationalOperatorFdxGV.hpp>
#include <VariationalOperatorFdxV.hpp>
#include <VariationalOperatorFgradGgradV.hpp>
#include <ConformTransformation.hpp>
#include <ErrorHandler.hpp>
/**
* @file BaseFEMDiscretization.hpp
* @author Stphane Del Pino
* @date Mon Apr 14 00:09:03 2003
*
* @brief Finite element base class
*
* This class is used to define finite element method standard tools
* [elementary matrices generation...]. It main purpose is to
* factorise pieces of code.
*/
template <typename GivenMeshType,
DiscretizationType::Type TypeOfDiscretization>
class BaseFEMDiscretization
: public Discretization
{
protected:
/// The type of mesh used for discretization
typedef GivenMeshType MeshType;
/// The geometry of finite elements
typedef typename MeshType::CellType CellType;
/// Finite element type
typedef typename FiniteElementTraits<CellType,
TypeOfDiscretization>::Type FiniteElement;
/// Elementary matrices type
typedef typename FiniteElement::ElementaryMatrix ElementaryMatrixType;
/// Elementary vector type
typedef typename FiniteElement::ElementaryVector ElementaryVectorType;
/// type of transformation from reference element
typedef
typename FiniteElementTraits<CellType,
TypeOfDiscretization>::Transformation
ConformTransformation;
/// Associated jacobian
typedef
typename FiniteElementTraits<CellType,
TypeOfDiscretization>::JacobianTransformation
JacobianTransformation;
/// Mesh used to perform discretization
MeshType& __mesh;
/// Set of elementary matrices
mutable ElementaryMatrixSet <ElementaryMatrixType> __eSet;
/// Operators that are discretized
mutable DiscretizedOperators<ElementaryMatrixType> __discretizedOperators;
/// Set of degrees of freedom
const DegreeOfFreedomSet& __degreeOfFreedomSet;
/**
* Generates elementary vector
*
* @param eVector the generated elementary vector
* @param J the jacobian of the transformation
* @param f the function to discretize
*/
void
generatesElementaryVector(ElementaryVectorType& eVector,
const JacobianTransformation& J,
const TinyVector<FiniteElement::numberOfQuadraturePoints,real_t>& f) const
{
FiniteElement::instance().integrateWj(eVector,J,f);
}
/**
* Generates elementary matrices set for a given element
*
* @param eSet the set of elementary matrices
* @param J the jacobian of the transformation
*/
void
generatesElementaryMatrix(ElementaryMatrixSet<ElementaryMatrixType>& eSet,
const JacobianTransformation& J) const
{
if (eSet.isMassOperator()) {
generatesElementaryMatrix(PDEOperator::massop,
J, eSet.massOperator());
}
if (eSet.isFirstOrderOperator()) {
for (size_t i=0; i<3; ++i) {
if (eSet.isFirstOrderUdxV(i)) {
generatesElementaryMatrix(PDEOperator::firstorderopTransposed,
J,eSet.firstOrderOperatorUdxV(i),i);
}
if (eSet.isFirstOrderDxUV(i)) {
generatesElementaryMatrix(PDEOperator::firstorderop, J,
eSet.firstOrderOperatorDxUV(i),i);
}
}
}
if (eSet.isSecondOrderOperator()) {
for (size_t i=0; i<3; ++i)
for (size_t j=0; j<3; ++j) {
if (eSet.isSecondOrderOperator(i,j)) {
generatesElementaryMatrix(PDEOperator::secondorderop, J,
eSet.secondOrderOperator(i,j),i,j);
}
}
}
if (eSet.isDivMuGrad()) {
generatesElementaryMatrix(PDEOperator::divmugrad, J, eSet.divMuGrad());
}
}
/**
* Generates an elementary matrix for a given operator in an
* element. The row and column number can be specified when operator
* is not scalar: \f$ \partial_{x_i}(w_l)\partial_{x_j}(w_k)\f$ for instance.
*
* @param operatorType type of the operator
* @param J jacobian of the transformation
* @param matelem generated elementary matrix
* @param i row number
* @param j column number
*/
void
generatesElementaryMatrix(const PDEOperator::Type operatorType,
const JacobianTransformation& J,
ElementaryMatrixType& matelem,
const size_t i = 0, const size_t j = 0) const
{
matelem = 0;
switch(operatorType) {
case PDEOperator::firstorderop: {
FiniteElement::instance().integrateDWjWi(matelem,i,J);
matelem *= J.jacobianDet();
break;
}
case PDEOperator::firstorderopTransposed: {
FiniteElement::instance().integrateWjDWi(matelem,i,J);
matelem *= J.jacobianDet();
break;
}
case PDEOperator::divmugrad: {
FiniteElement::instance().integrateDWjDWi(matelem,0,0,J);
FiniteElement::instance().integrateDWjDWi(matelem,1,1,J);
FiniteElement::instance().integrateDWjDWi(matelem,2,2,J);
matelem *= J.jacobianDet();
break;
}
case PDEOperator::secondorderop: {
FiniteElement::instance().integrateDWjDWi(matelem,i,j,J);
matelem *= J.jacobianDet();
break;
}
case PDEOperator::massop: {
FiniteElement::instance().integrateWjWi(matelem,J);
matelem *= J.jacobianDet();
break;
}
default: {
throw ErrorHandler(__FILE__,__LINE__,
"unable to built elementary matrix for this operator",
ErrorHandler::unexpected);
}
}
}
/**
* Constructor of the discretization
*
* @param p the problem
* @param m the mesh used for discretization
* @param a matrix storing discretization
* @param bb vector that stores second member discretization
* @param dof degrees of freedom set
*
*/
BaseFEMDiscretization(const Problem& p,
MeshType& m,
BaseMatrix& a,
BaseVector& bb,
const DegreeOfFreedomSet& dof)
: Discretization(Discretization::FEM, p, a, bb),
__mesh(m),
__eSet(problem()),
__discretizedOperators(__eSet,problem()),
__degreeOfFreedomSet(dof)
{
;
}
/**
* virtual destructor
*
*/
virtual ~BaseFEMDiscretization()
{
;
}
};
#endif // BASE_FEM_DISCRETIZATION_HPP
|