1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
// This file is part of ff3d - http://www.freefem.org/ff3d
// Copyright (C) 2001, 2002, 2003 Stphane Del Pino
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
// $Id: ConformTransformation.cpp,v 1.17 2007/06/09 10:37:07 delpinux Exp $
#include <Domain.hpp>
#include <ConformTransformation.hpp>
#include <ScalarFunctionBase.hpp>
real_t
ConformTransformationQ1Hexahedron::integrate(const ScalarFunctionBase& f) const
{
throw ErrorHandler(__FILE__,__LINE__,
"not implemented",
ErrorHandler::unexpected);
return 0;
}
bool
ConformTransformationQ1Hexahedron::
__inside(const real_t& x,
const real_t& y,
const real_t& z,
TinyVector<6, bool>& faces) const
{
bool inside = true;
faces = false;
for (size_t i = 0 ; i<Hexahedron::NumberOfFaces; ++i) {
TinyVector<3, real_t> faceMassCenter(0,0,0);
TinyVector<Hexahedron::FaceType::NumberOfVertices, Vertex*> face;
for (size_t n=0; n<Hexahedron::FaceType::NumberOfVertices; ++n) {
const Vertex& v = __H(Hexahedron::faces[i][n]);
faceMassCenter += v;
face[n] = const_cast<Vertex*>(&v);
}
Quadrangle Q(face);
faceMassCenter *= (1./Hexahedron::FaceType::NumberOfVertices);
TinyVector<3,real_t> normal = Q.normal();
TinyVector<3, real_t> X(x,y,z);
X -= faceMassCenter;
if (X*normal > 0) { // must look in that direction
faces[i] = true;
inside = false;
}
}
return inside;
}
//! Computes Xhat, the point which transformed is (x,y,z)
bool ConformTransformationQ1Hexahedron::
invertT(const real_t& x,
const real_t& y,
const real_t& z,
TinyVector<3,real_t>& Xhat) const
{
// initialization
for(size_t i=0; i<3; ++i)
Xhat[i] = 0.5;
TinyVector<3,real_t> X;
TinyVector<3,real_t> f;
TinyVector<3,real_t> delta;
const size_t maxiter = 100;
size_t niter = 0;
do {
niter++;
//! Computing F(Xhat) - (x,y,z).
value(Xhat,f);
f[0] -= x;
f[1] -= y;
f[2] -= z;
// Evaluation of the Jacobian
TinyMatrix<3,3,real_t> J;
dx(Xhat,X);
for (size_t i=0; i<3; ++i)
J(i,0) = X[i];
dy(Xhat,X);
for (size_t i=0; i<3; ++i)
J(i,1) = X[i];
dz(Xhat,X);
for (size_t i=0; i<3; ++i)
J(i,2) = X[i];
delta = f/J;
// Uses relaxation to help convergence (the functional is not convexe)
Xhat -= delta;
if (niter>maxiter) { // or(Norm(f)>10)) {
return false;
}
} while(Norm(f)>1E-3);
for (size_t i = 0; i<Xhat.size(); ++i) {
if ((Xhat[i]<1E-3) or (Xhat[i]>1.001)) {
return false;
}
}
return true;
}
real_t
ConformTransformationP1Tetrahedron::integrate(const ScalarFunctionBase& f) const
{
throw ErrorHandler(__FILE__,__LINE__,
"not implemented",
ErrorHandler::unexpected);
return 0;
}
real_t
ConformTransformationQ1CartesianHexahedron::
integrateCharacteristic(const Domain& d) const
{
return 1;
// Here we use order 4 Lobatto quadrature
TinyVector<4, real_t> x;
x[0] = 0.;
x[1] = .27639320225002103036; //(1-sqrt(5)/5)/2.;
x[2] = .72360679774997896964; //(1+sqrt(5)/5)/2.;
x[3] = 1.;
TinyVector<4, real_t> w;
w[0] = 1./12.;
w[1] = 5./12.;
w[2] = 5./12.;
w[3] = 1./12.;
real_t sum = 0;
TinyVector<3, real_t> X_hat;
TinyVector<3, real_t> X;
for (unsigned i=0; i<4; ++i) {
X_hat[0] = x[i];
for (unsigned j=0; j<4; ++j) {
X_hat[1] = x[j];
for (unsigned k=0; k<4; ++k) {
X_hat[2] = x[k];
this->value(X_hat, X);
sum += w[i]*w[j]*w[k] * (d.inside(X) ? 1 : 0);
}
}
}
return sum;
}
real_t
ConformTransformationP1Triangle::integrate(const ScalarFunctionBase& f) const
{
throw ErrorHandler(__FILE__,__LINE__,
"not implemented",
ErrorHandler::unexpected);
return 0.;
}
real_t
ConformTransformationQ1Quadrangle::integrate(const ScalarFunctionBase& f) const
{
throw ErrorHandler(__FILE__,__LINE__,
"not implemented",
ErrorHandler::unexpected);
return 0.;
}
|