1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
// This file is part of ff3d - http://www.freefem.org/ff3d
// Copyright (C) 2001, 2002, 2003 Stphane Del Pino
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
// $Id: DiscretizedOperators.hpp,v 1.6 2006/07/20 19:08:54 delpinux Exp $
#ifndef DISCRETIZED_OPERATORS_HPP
#define DISCRETIZED_OPERATORS_HPP
#include <TinyMatrix.hpp>
#include <ReferenceCounting.hpp>
#include <Problem.hpp>
#include <ScalarFunctionBase.hpp>
#include <ElementaryMatrixSet.hpp>
#include <PDESystem.hpp>
#include <MassOperator.hpp>
#include <FirstOrderOperator.hpp>
#include <DivMuGrad.hpp>
#include <SecondOrderOperator.hpp>
#include <VariationalProblem.hpp>
#include <VariationalOperatorMuGradUGradV.hpp>
#include <VariationalOperatorAlphaDxUDxV.hpp>
#include <VariationalOperatorNuUdxV.hpp>
#include <VariationalOperatorNuDxUV.hpp>
#include <VariationalOperatorAlphaUV.hpp>
#include <ErrorHandler.hpp>
#include <map>
/**
* @file DiscretizedOperators.hpp
* @author Stephane Del Pino
* @date Wed Jul 19 15:57:01 2006
*
* @brief Builds lists of discretized operators according to a problem
* definition
*
*/
template <typename ElementaryMatrixType>
class DiscretizedOperators
{
public:
/*! This sub-class is used to describe the position of the parameter
function associated to a PDE Operator in the System.
*/
class FunctionAndPosition
{
private:
const size_t __i; /**< line of the function in the linear system */
const size_t __j; /**< column of the function in the linear system */
ConstReferenceCounting<ScalarFunctionBase>
__function; /**< coefficient function */
public:
/**
* Read-only access to the line of the function
*
* @return __i
*/
inline const size_t& i() const
{
return __i;
}
/**
* Read-only access to the column of the function
*
* @return __j
*/
inline const size_t& j() const
{
return __j;
}
/**
* Evaluates the function at the point @f$ x @f$
*
* @return @f$ f(x) @f$
*/
inline real_t operator()(const TinyVector<3, real_t>& x) const
{
return (*__function)(x);
}
/**
* Copy constructor
*
* @param fap given FunctionAndPosition
*/
FunctionAndPosition(const FunctionAndPosition& fap)
: __i(fap.__i),
__j(fap.__j),
__function(fap.__function)
{
;
}
/**
* Constructor
*
* @param line line in the linear system
* @param column column in the linear system
* @param function given function
*/
FunctionAndPosition(const size_t& line,
const size_t& column,
ConstReferenceCounting<ScalarFunctionBase> function)
: __i(line),
__j(column),
__function(function)
{
;
}
/**
* Destructor
*
*/
~FunctionAndPosition()
{
;
}
};
// ================================
// Now we describe the class itself
// ================================
typedef std::pair<const ElementaryMatrixType*,
FunctionAndPosition > ListPair;
typedef std::multimap<const ElementaryMatrixType*,
FunctionAndPosition > List;
typedef typename List::iterator iterator;
typedef typename List::const_iterator const_iterator;
/**Begining of the list
*
* @return begin iterator
*/
typename DiscretizedOperators::iterator
begin()
{
return __list.begin();
}
/**
* Begining of the list
*
* @return begin const_iterator
*/
const typename DiscretizedOperators::const_iterator
begin() const
{
return __list.begin();
}
/**
* End of the list
*
* @return end iterator
*/
typename DiscretizedOperators::iterator
end()
{
return __list.end();
}
/**
* End of the list
*
* @return end const_iterator
*/
const typename DiscretizedOperators::const_iterator
end() const
{
return __list.end();
}
private:
const ElementaryMatrixSet<ElementaryMatrixType>&
__elementaryMatrixSet; /**< Reference to the elementary
matrices set */
List __list; /**< list of discretized operators */
/**
* Copy constructor
* @note this constructor is forbidden
*
* @param c given disretized operator
*/
DiscretizedOperators(const DiscretizedOperators& c);
public:
/**
* Constructor
*
* @param e elementary matrices set
* @param problem problem to discretize
*/
DiscretizedOperators(const ElementaryMatrixSet<ElementaryMatrixType>& e,
const Problem& problem)
: __elementaryMatrixSet(e)
{
switch (problem.type()) {
case Problem::pdeProblem: {
const PDESystem& pdeSystem
= dynamic_cast<const PDESystem&>(problem);
for (size_t i=0; i<problem.numberOfUnknown(); ++i) {
const PDE& pde = pdeSystem[i].pde();
for (size_t j=0; j<pdeSystem.numberOfEquations(); ++j) {
const PDEOperatorSum& pdeOpSum = *pde[j];
for (size_t k=0; k<pdeOpSum.numberOfOperators(); ++k) {
const PDEOperator& pdeOperator = *pdeOpSum[k];
switch (pdeOperator.type()) {
case PDEOperator::firstorderop: {
const FirstOrderOperator& firstOrderOperator
= dynamic_cast<const FirstOrderOperator&>(pdeOperator);
for (size_t m=0; m<3; ++m) {
if (firstOrderOperator.isSet(m)) {
__list.insert(ListPair(&__elementaryMatrixSet.firstOrderOperatorDxUV(m),
FunctionAndPosition(i,j,firstOrderOperator.nu(m))));
}
}
break;
}
case PDEOperator::divmugrad: {
const DivMuGrad& divMuGrad
= dynamic_cast<const DivMuGrad&>(pdeOperator);
__list.insert(ListPair(&__elementaryMatrixSet.divMuGrad(),
FunctionAndPosition(i,j,divMuGrad.mu())));
break;
}
case PDEOperator::secondorderop: {
const SecondOrderOperator& secondOrderOperator
= dynamic_cast<const SecondOrderOperator&>(pdeOperator);
for (size_t m=0; m<3; ++m)
for (size_t n=0; n<3; ++n) {
if (secondOrderOperator.isSet(m,n)) {
__list.insert(ListPair(&__elementaryMatrixSet.secondOrderOperator(m,n),
FunctionAndPosition(i,j,secondOrderOperator.A(m,n))));
}
}
break;
}
case PDEOperator::massop: {
const MassOperator& massOperator
= dynamic_cast<const MassOperator&>(pdeOperator);
__list.insert(ListPair(&__elementaryMatrixSet.massOperator(),
FunctionAndPosition(i,j,massOperator.alpha())));
break;
}
default: {
throw ErrorHandler(__FILE__,__LINE__,
"unknown operator",
ErrorHandler::unexpected);
}
}
}
}
}
break;
}
case Problem::variationalProblem: {
const VariationalProblem& P
= dynamic_cast<const VariationalProblem&>(problem);
for (VariationalProblem::bilinearOperatorConst_iterator
i = P.beginBilinearOperator();
i != P.endBilinearOperator(); ++i) {
switch ((*(*i)).type()) {
case VariationalBilinearOperator::muGradUGradV: {
const VariationalMuGradUGradVOperator& O
= dynamic_cast<const VariationalMuGradUGradVOperator&>(*(*i));
__list.insert(ListPair(&__elementaryMatrixSet.divMuGrad(),
FunctionAndPosition(O.unknownNumber(),
O.testFunctionNumber(),
O.mu())));
break;
}
case VariationalBilinearOperator::alphaDxUDxV: {
const VariationalAlphaDxUDxVOperator& O
= dynamic_cast<const VariationalAlphaDxUDxVOperator&>(*(*i));
const size_t i = O.i();
const size_t j = O.j();
__list.insert(ListPair(&__elementaryMatrixSet.secondOrderOperator(i,j),
FunctionAndPosition(O.unknownNumber(),
O.testFunctionNumber(),
O.alpha())));
break;
}
case VariationalBilinearOperator::nuUdxV: {
const VariationalNuUdxVOperator& O
= dynamic_cast<const VariationalNuUdxVOperator&>(*(*i));
const size_t n = O.i();
__list.insert(ListPair(&__elementaryMatrixSet.firstOrderOperatorUdxV(n),
FunctionAndPosition(O.unknownNumber(),
O.testFunctionNumber(),
O.nu())));
break;
}
case VariationalBilinearOperator::nuDxUV: {
const VariationalNuDxUVOperator& O
= dynamic_cast<const VariationalNuDxUVOperator&>(*(*i));
const size_t n = O.i();
__list.insert(ListPair(&__elementaryMatrixSet.firstOrderOperatorDxUV(n),
FunctionAndPosition(O.unknownNumber(),
O.testFunctionNumber(),
O.nu())));
break;
}
case VariationalBilinearOperator::alphaUV: {
const VariationalAlphaUVOperator& O
= dynamic_cast<const VariationalAlphaUVOperator&>(*(*i));
__list.insert(ListPair(&__elementaryMatrixSet.massOperator(),
FunctionAndPosition(O.unknownNumber(),
O.testFunctionNumber(),
O.alpha())));
break;
}
default: {
throw ErrorHandler(__FILE__,__LINE__,
"unknown variational form",
ErrorHandler::unexpected);
}
}
}
break;
}
default: {
throw ErrorHandler(__FILE__,__LINE__,
"Unknown problem type",
ErrorHandler::unexpected);
}
}
}
};
#endif // DISCRETIZED_OPERATORS_HPP
|