1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
// This file is part of ff3d - http://www.freefem.org/ff3d
// Copyright (C) 2001, 2002, 2003 Stphane Del Pino
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
// $Id: DivMuGrad.hpp,v 1.4 2007/05/20 23:02:47 delpinux Exp $
// Implement the - div(grad()) operator, in the domain.
// using finit differences on a Structured3DMesh
#ifndef DIV_MU_GRAD_HPP
#define DIV_MU_GRAD_HPP
#include <PDEOperator.hpp>
#include <ScalarFunctionBase.hpp>
#include <ScalarFunctionBuilder.hpp>
/**
* @file DivMuGrad.hpp
* @author Stephane Del Pino
* @date Wed Jul 19 16:10:23 2006
*
* @brief This class describes second order partial differencial
* operators of the form: \f$ \nabla\cdot \mu \nabla \f$
*
* This class describes second order partial differencial operators of
* the form: \f$ \nabla\cdot \mu \nabla \f$ where
*
* \f$
* \begin{array}{ll}
* \mu: &\Omega \to R \\
* &x \mapsto \mu(x)
* \end{array}
* \f$.
*
* \par example: if \f$ \mu = 1 \f$, the operator is the Laplacian.
*
*
*/
class DivMuGrad
: public PDEOperator
{
ConstReferenceCounting<ScalarFunctionBase>
__mu; /**< @f$ \mu @f$ */
public:
/**
* Access to the ith coefficient of the operator
*
* @param i the coefficient number
*
* @return @f$ \mu @f$
*/
ConstReferenceCounting<ScalarFunctionBase>
coefficient(const size_t& i)
{
ASSERT (i<1);
return __mu;
}
/**
* Gets the name of the operator
*
* @return "DivMuGrad"
*/
std::string typeName() const
{
return "DivMuGrad";
}
/**
* read-only access to the coefficient
*
* @return @f$ \mu @f$
*/
ConstReferenceCounting<ScalarFunctionBase>
mu() const
{
return __mu;
}
/**
* "multiplies" the operator by a coefficient @a c
*
* @param c the coefficient
*
* @return @f$ \nabla\cdot c\mu \nabla @f$
*/
ConstReferenceCounting<PDEOperator>
operator*(const ConstReferenceCounting<ScalarFunctionBase>& c) const
{
ScalarFunctionBuilder functionBuilder;
functionBuilder.setFunction(__mu);
functionBuilder.setBinaryOperation(BinaryOperation::product,c);
return new DivMuGrad(functionBuilder.getBuiltFunction());
}
/**
* Returns the opposite operator
*
* @return @f$ -\nabla\cdot\mu\nabla @f$
*/
ConstReferenceCounting<PDEOperator>
operator-() const
{
ScalarFunctionBuilder functionBuilder;
functionBuilder.setFunction(__mu);
functionBuilder.setUnaryMinus();
return new DivMuGrad(functionBuilder.getBuiltFunction());
}
/**
* Constructor
*
* @param mu the coefficient
*/
DivMuGrad(ConstReferenceCounting<ScalarFunctionBase> mu)
: PDEOperator(PDEOperator::divmugrad,
1),
__mu(mu)
{
;
}
/**
* Copy constructor
*
* @param D given DivMuGrad
*/
DivMuGrad(const DivMuGrad& D)
: PDEOperator(D),
__mu(D.__mu)
{
;
}
/**
* Destructor
*
*/
~DivMuGrad()
{
;
}
};
#endif // DIV_MU_GRAD_HPP
|