1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
// This file is part of ff3d - http://www.freefem.org/ff3d
// Copyright (C) 2001-2005 Stphane Del Pino
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
// $Id: FEMFunction.hpp,v 1.7 2007/05/20 23:02:47 delpinux Exp $
#ifndef FEM_FUNCTION_HPP
#define FEM_FUNCTION_HPP
#include <FiniteElementTraits.hpp>
#include <FEMFunctionBase.hpp>
/**
* @file FEMFunction.hpp
* @author Stephane Del Pino
* @date Wed Jul 19 16:15:18 2006
*
* @brief This class manages fem functions for various finite element
* types
*
*/
template <typename MeshType,
typename FiniteElementTraits>
class FEMFunction
: public FEMFunctionBase
{
private:
typedef typename MeshType::CellType
CellType; /**< @typedef type of cells of the
mesh */
typedef
typename FiniteElementTraits::Transformation
Transformation; /**< @typedef type of the conform
transformation */
typedef
typename FiniteElementTraits::Type
FiniteElementType; /**< @typedef type of the finite
element */
ConstReferenceCounting<MeshType>
__mesh; /**< the mesh where the function
leaves */
/**
* Copy constructor
*
* @param f given function
* @note forbidden to avoid wild copies
*/
FEMFunction(const FEMFunction<MeshType,FiniteElementTraits>& f);
public:
/**
* Evaluates the FEMFunction at point \a x.
*
* @param x the position of evaluation
*
* @return \f$ f(x) \f$
*/
real_t operator()(const TinyVector<3,real_t>& x) const
{
typename MeshType::const_iterator icell = __mesh->find(x);
if (icell.end()) {
return __outsideValue;
}
const CellType& K = *icell;
Transformation T(K);
TinyVector<3, real_t> xhat;
T.invertT(x, xhat);
real_t value = 0;
for (size_t l=0; l<FiniteElementType::numberOfDegreesOfFreedom; ++l) {
value += __values[__dofPositionsSet(icell.number(),l)]*FiniteElementType::instance().W(l,xhat);
}
return value;
}
/**
* Affects a function to a FEMFunction
*
* @param f original function
*/
void operator=(const ScalarFunctionBase& f)
{
// during an affectation, outside values are set to 0 (the fem
// function is "pure")
__outsideValue = 0;
if (f.type() == this->type()) {
const FEMFunctionBase& femBase = dynamic_cast<const FEMFunctionBase&>(f);
if ((femBase.discretizationType() == this->discretizationType()) and
(femBase.baseMesh() == this->baseMesh())) {
// if the function is of the same kind: just copy values
const FEMFunction<MeshType,FiniteElementTraits>& fem
= dynamic_cast<const FEMFunction<MeshType,FiniteElementTraits>&>(femBase);
__values = fem.__values;
return;
}
}
for (size_t i=0; i<__values.size(); i++) {
const TinyVector<3>& x = __dofPositionsSet.vertex(i);
__values[i] = f(x);
}
}
/**
* Evaluates the function's gradient at position @a x
*
* @param x position of evaluation
*
* @return @f$ \nabla f (x) \nabla @f$
*/
TinyVector<3,real_t>
gradient(const TinyVector<3,real_t>& x) const
{
typename MeshType::const_iterator icell = __mesh->find(x);
if (icell.end()) {
return 0;
}
const CellType& K = *icell;
Transformation T(K);
TinyVector<3, real_t> xhat;
T.invertT(x, xhat);
TinyVector<3, real_t> referenceGradient = 0;
for (size_t l=0; l<FiniteElementType::numberOfDegreesOfFreedom; ++l) {
const real_t value = __values[__dofPositionsSet(icell.number(),l)];
referenceGradient[0] += value*FiniteElementType::instance().dxW(l,xhat);
referenceGradient[1] += value*FiniteElementType::instance().dyW(l,xhat);
referenceGradient[2] += value*FiniteElementType::instance().dzW(l,xhat);
}
TinyMatrix<3,3, real_t> J;
{
TinyVector<3, real_t> temp;
T.dx(x,temp);
for(size_t i=0; i<3; ++i) {
J(0,i) = temp[i];
}
T.dy(x,temp);
for(size_t i=0; i<3; ++i) {
J(1,i) = temp[i];
}
T.dz(x,temp);
for(size_t i=0; i<3; ++i) {
J(2,i) = temp[i];
}
}
// now we use
TinyVector<3, real_t> result;
gaussPivot(J, referenceGradient, result);
return result;
}
/**
* Evaluates first derivative of the function
*
* @param x position of evaluation
*
* @return @f$ \partial_x f at position x @f$
*/
real_t dx(const TinyVector<3>& x) const
{
return gradient(x)[0];
}
/**
* Evaluates second derivative of the function
*
* @param x position of evaluation
*
* @return @f$ \partial_y f at position x @f$
*/
real_t dy(const TinyVector<3>& x) const
{
return gradient(x)[1];
}
/**
* Evaluates third derivative of the function
*
* @param x position of evaluation
*
* @return @f$ \partial_z f at position x @f$
*/
real_t dz(const TinyVector<3>& x) const
{
return gradient(x)[2];
}
/**
* Constructor
*
* @param mesh mesh supporting the function
*/
FEMFunction(ConstReferenceCounting<MeshType> mesh)
: FEMFunctionBase(mesh, DiscretizationType::Type(FiniteElementTraits::discretizationType)),
__mesh(mesh)
{
;
}
/**
* Constructor
*
* @param mesh mesh supporting the function
* @param f function of initialization
*/
FEMFunction(ConstReferenceCounting<MeshType> mesh,
const ScalarFunctionBase& f)
: FEMFunctionBase(mesh, DiscretizationType::Type(FiniteElementTraits::discretizationType)),
__mesh(mesh)
{
(*this) = f;
}
/**
* Constructor
*
* @param mesh mesh supporting the function
* @param d value of initialization
*/
FEMFunction(ConstReferenceCounting<MeshType> mesh,
const real_t& d)
: FEMFunctionBase(mesh, DiscretizationType::Type(FiniteElementTraits::discretizationType)),
__mesh(mesh)
{
__values = d;
}
/**
* Constructor
*
* @param mesh given mesh
* @param values given values
*/
FEMFunction(ConstReferenceCounting<MeshType> mesh,
const Vector<real_t>& values)
: FEMFunctionBase(mesh, DiscretizationType::Type(FiniteElementTraits::discretizationType)),
__mesh(mesh)
{
ASSERT(__values.size() == values.size());
__values = values;
}
/**
* Destructor
*
*/
~FEMFunction()
{
;
}
};
#endif // FEM_FUNCTION_HPP
|