File: FictitiousDomainMethod.cpp

package info (click to toggle)
freefem3d 1.0pre10-3.4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 25,016 kB
  • ctags: 8,675
  • sloc: cpp: 57,204; sh: 8,788; yacc: 2,975; makefile: 1,149; ansic: 508; perl: 110
file content (269 lines) | stat: -rw-r--r-- 7,454 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
//  This file is part of ff3d - http://www.freefem.org/ff3d
//  Copyright (C) 2001, 2002, 2003 Stphane Del Pino

//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2, or (at your option)
//  any later version.

//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.

//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the Free Software Foundation,
//  Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  

//  $Id: FictitiousDomainMethod.cpp,v 1.26 2007/05/20 23:15:36 delpinux Exp $

#include <FictitiousDomainMethod.hpp>

#include <KrylovSolver.hpp>
#include <PDESolution.hpp>

#include <MeshOfHexahedra.hpp>
#include <Structured3DMesh.hpp>

#include <PDESystem.hpp>

#include <MeshOfHexahedra.hpp>
#include <Structured3DMesh.hpp>

#include <Dirichlet.hpp>
#include <Fourrier.hpp>
#include <Neumann.hpp>

#include <MatrixManagement.hpp>

#include <DoubleHashedMatrix.hpp>
#include <SparseMatrix.hpp>
#include <PETScMatrix.hpp>

#include <FEMDiscretization.hpp>

#include <FEMFunctionBuilder.hpp>

#include <ConformTransformation.hpp>

#include <BoundaryConditionDiscretization.hpp>

void FictitiousDomainMethod::Compute(Solution& U)
{
  Structured3DMesh& m = dynamic_cast<Structured3DMesh&>(mesh());

  KrylovSolver K(*__A, *__b, __degreeOfFreedomSet,
		 new Structured3DMeshShape(m.shape()));
  
  PDESolution& u = static_cast<PDESolution&>(U);

  K.solve(problem(), u.values());
  for (size_t i=0; i<m.numberOfCells();++i) {
    Cell& k = m.cell(i);
    k.setFictitious(false); // reset fictitious state!
 }
}


template <typename CellType>
real_t FictitiousDomainMethod::
__integrateCharacteristicFunction(const CellType& k, const Domain& d)
{
  throw ErrorHandler(__FILE__,__LINE__,
		     "not implemented",
		       ErrorHandler::unexpected);
  return 0;
}

template <>
real_t FictitiousDomainMethod::
__integrateCharacteristicFunction(const CartesianHexahedron& k, const Domain& d)
{
  ConformTransformationQ1CartesianHexahedron T(k);
  return T.integrateCharacteristic(d);
}

template <typename MeshType>
void FictitiousDomainMethod::
__computesDegreesOfFreedom(ConstReferenceCounting<Problem> givenProblem)
{
  ffout(2) << "Adding Characteristic function of the domain to PDEs\n";
  Vector<bool> dofVertices;

  dofVertices.resize(mesh().numberOfVertices());
  dofVertices = false;

  const Domain& domain = *givenProblem->domain();

  for (size_t i=0; i<mesh().numberOfVertices(); ++i) {
    dofVertices[i] = domain.inside(mesh().vertex(i));
  }

  Vector<real_t> kiValues(mesh().numberOfCells()); // "mean" value of the characteristic function

  MeshType& m = static_cast<MeshType&>(*__mesh);

  for (size_t i=0; i<m.numberOfCells();++i) {
    typename MeshType::CellType& k = m.cell(i);
    unsigned numberIn = 0;

    // Computation of the caracteristic function
    for (unsigned j=0; j<MeshType::CellType::NumberOfVertices; ++j) {
      numberIn += (dofVertices(m.vertexNumber(k(j))))?1:0;
    }

    switch (numberIn) {
    case 0: {
      k.setFictitious(true);
      kiValues[i] = 0;
      break;
    }
    case MeshType::CellType::NumberOfVertices: {
      kiValues[i] = 1;
      break;
    }
    default:{
      kiValues[i] = __integrateCharacteristicFunction(k, domain);
    }
    }
  }

  DiscretizationType discretizationType(DiscretizationType::lagrangianFEM0);

  FEMFunctionBuilder femBuilder;
  femBuilder.build(discretizationType,
		   __mesh,
		   kiValues);
  ConstReferenceCounting<ScalarFunctionBase> u = femBuilder.getBuiltScalarFunction();

  __problem = (*givenProblem) * u;
  ffout(2) << "Adding Characteristic function of the domain to PDEs: done\n";

  ffout(2) << "Using "<< this->__degreeOfFreedomSet.numberOfUsedDOFPositions()
	   << " DOF over "
	   << this->__degreeOfFreedomSet.numberOfDOFPositions() << " available!\n";
}

void FictitiousDomainMethod::
computesDegreesOfFreedom(ConstReferenceCounting<Problem> givenProblem)
{
  switch (mesh().type()) {
  case Mesh::cartesianHexahedraMesh: {
    this->__computesDegreesOfFreedom<Structured3DMesh>(givenProblem);
    break;
  }
  default: {
    throw ErrorHandler(__FILE__,__LINE__,
		       "mesh type not supported by FDM",
		       ErrorHandler::normal);
  }
  }
}


template <typename MeshType,
	  DiscretizationType::Type TypeOfDiscretization>
void FictitiousDomainMethod::__discretizeOnMesh()
{
  MemoryManager MM;

  bool performAssembling =MM.ReserveMatrix(__A,
					   problem().numberOfUnknown(),
					   __degreeOfFreedomSet.size());

  MM.ReserveVector(__b,
		   problem().numberOfUnknown(), 
		   __degreeOfFreedomSet.size());

  ffout(2) << "Fictitious domain method: discretization...\n";

  ReferenceCounting<FEMDiscretization<MeshType, TypeOfDiscretization> > FEM
    = new FEMDiscretization<MeshType,
                            TypeOfDiscretization>(problem(),
						  dynamic_cast<MeshType&>(*__mesh),
						  *__A,*__b, __degreeOfFreedomSet);

  if (performAssembling) {
    FEM->assembleMatrix();
  } else {
    ffout(2) << "keeping previous operator discretization\n";
  }

  FEM->assembleSecondMember();

  ffout(2) << "- discretizing boundary conditions\n";

  ReferenceCounting<BoundaryConditionDiscretization> bcDiscretization
    = this->discretizeBoundaryConditions();

  // Set Dirichlet information to the matrix
  FEM->setDirichletList(bcDiscretization->getDirichletList());

  ffout(2) << "- second member modification\n";

  bcDiscretization->setSecondMember(__A,__b);

  ffout(2) << "- matrix modification\n";

  bcDiscretization->setMatrix(__A,__b);

  ffout(2) << "Fictitious domain method: discretization done\n";

  if (__A->type() == BaseMatrix::doubleHashedMatrix) {
    Timer t;
    t.start();

#warning temporary implementation
#ifdef    HAVE_PETSC
    PETScMatrix* aa
      = new PETScMatrix(static_cast<DoubleHashedMatrix&>(*__A));
    __A = aa; // now use sparse matrix
#else  // HAVE_PETSC
    SparseMatrix* aa
      = new SparseMatrix(static_cast<DoubleHashedMatrix&>(*__A));
    __A = aa; // now use sparse matrix
#endif // HAVE_PETSC

    t.stop();
    ffout(2) << "- matrix copy time: " << t << '\n';
  }
}

template <DiscretizationType::Type TypeOfDiscretization>
void FictitiousDomainMethod::__discretize()
{

  switch (this->mesh().type()) {
  case Mesh::cartesianHexahedraMesh: {
    this->__discretizeOnMesh<Structured3DMesh, TypeOfDiscretization>();
    break;
  }
  default: {
    throw ErrorHandler(__FILE__,__LINE__,
		       "this mesh type is not supported by FDM",
		       ErrorHandler::normal);
  }
  }

}

void FictitiousDomainMethod::Discretize(ConstReferenceCounting<Problem> givenProblem)
{
  this->computesDegreesOfFreedom(givenProblem);

  switch(__discretizationType.type()) {
  case DiscretizationType::lagrangianFEM1: {
    this->__discretize<DiscretizationType::lagrangianFEM1>();
    return;
  }
  case DiscretizationType::lagrangianFEM2: {
    this->__discretize<DiscretizationType::lagrangianFEM2>();
    return;
  }
  default: {
    throw ErrorHandler(__FILE__,__LINE__,
		       "Discretization type not implemented",
		       ErrorHandler::normal);
  }
  }
}