1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
// This file is part of ff3d - http://www.freefem.org/ff3d
// Copyright (C) 2001, 2002, 2003 Stphane Del Pino
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
// $Id: Rotation.cpp,v 1.2 2003/05/04 18:09:01 delpinux Exp $
#include <Rotation.hpp>
#include <cmath>
#include <sstream>
//! Applies the Rotation to the vector \a v.
TinyVector<3>& Rotation::operator()(TinyVector<3>& v) const
{
v = __matrix*v;
return (v);
}
//! Applies the inverse Rotation to the vector \a v.
TinyVector<3>& Rotation::inverse(TinyVector<3>& v) const
{
// As 'matrix' is composed of rotations, and
// as rotations are othogonal matrices
// the inverse of 'matrix' is its transposed
TinyVector<3> Temporary = 0;
for (size_t i=0; i<3; i++)
for (size_t j=0; j<3; j++)
Temporary[i]+=__matrix(j,i)*v[j];
v = Temporary;
return v;
}
/*! Constructs the Rotation for a set of given angles given in \a v by
builting the invert of the Rotation matrix since it is more usefull than the
Rotation matrix.
\remark The angles contained in r are expressed using degrees.
*/
Rotation::Rotation(const TinyVector<3>& r)
{
__type = rotation;
__angles = r;
const real_t deg2rad=4*std::atan(1.)/180.;
const real_t cosx = std::cos(deg2rad*r[0]);
const real_t cosy = std::cos(deg2rad*r[1]);
const real_t cosz = std::cos(deg2rad*r[2]);
const real_t sinx = std::sin(deg2rad*r[0]);
const real_t siny = std::sin(deg2rad*r[1]);
const real_t sinz = std::sin(deg2rad*r[2]);
__matrix(0,0) = cosy*cosz;
__matrix(0,1) = -sinz*cosx + sinx*siny*cosz;
__matrix(0,2) = sinx*sinz + cosx*siny*cosz;
__matrix(1,0) = cosy*sinz;
__matrix(1,1) = cosx*cosz + sinx*siny*sinz;
__matrix(1,2) = -sinx*cosy + cosx*siny*sinz;
__matrix(2,0) = -siny;
__matrix(2,1) = sinx*cosy;
__matrix(2,2) = cosx*cosy;
}
/*! Default constructor: the Rotation is the identity.
\warning this might not be pertinent and may be removed.
*/
Rotation::Rotation()
{
__type = rotation;
__angles = 0;
__matrix(0,0) = 1;
__matrix(1,0) = 0;
__matrix(2,0) = 0;
__matrix(0,1) = 0;
__matrix(1,1) = 1;
__matrix(2,1) = 0;
__matrix(0,2) = 0;
__matrix(1,2) = 0;
__matrix(2,2) = 1;
}
//! Copy constructor.
Rotation::Rotation(const Rotation& r)
{
__type = rotation;
__angles = r.__angles;
for (size_t i=0; i<3; i++)
for (size_t j=0; j<3; j++)
__matrix(i,j) = r.__matrix(i,j);
}
//! prints rotation information to a string.
std::string Rotation::povWrite() const
{
std::stringstream povs;
povs << "rotation <"
<< __angles[0]
<< ", "
<< __angles[1]
<< ", "
<< __angles[2]
<< ">";
povs << std::ends;
return povs.str();
}
|