1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
// This file is part of ff3d - http://www.freefem.org/ff3d
// Copyright (C) 2001, 2002, 2003 Stphane Del Pino
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
// $Id: KrylovSolver.cpp,v 1.5 2005/11/27 16:41:48 delpinux Exp $
#include <BaseVector.hpp>
#include <BaseMatrix.hpp>
#include <Vector.hpp>
#include <SparseMatrix.hpp>
#include <KrylovSolver.hpp>
#include <Preconditioner.hpp>
#include <DiagPrecond.hpp>
#include <IncompleteCholeskiFactorization.hpp>
#include <IdentityPrecond.hpp>
#include <PDESystem.hpp>
#include <ConjugateGradient.hpp>
#include <BiConjugateGradient.hpp>
#include <BiConjugateGradientStabilized.hpp>
#include <PETScKrylovSolver.hpp>
#include <MultiGrid.hpp>
#include <Timer.hpp>
void KrylovSolverDim(BaseVector& u,
const BaseMatrix& A, const BaseVector& b,
const Problem& problem,
ReferenceCounting<Structured3DMeshShape> meshShape,
const KrylovSolverOptions::Type& type,
const KrylovSolverOptions::PreconditionerType& pType,
const DegreeOfFreedomSet& degreeOfFreedomSet)
{
#warning temporay implementation
#ifdef HAVE_PETSC
assert(A.type() == BaseMatrix::petscMatrix);
PETScKrylovSolver pks(static_cast<const Vector<real_t>&>(b),
static_cast<const PETScMatrix&>(A),
static_cast<Vector<real_t>&>(u));
return;
#endif // HAVE_PETSC
ReferenceCounting<Preconditioner> P = 0;
switch (pType) {
case KrylovSolverOptions::none: {
P = new IdentityPredond(problem);
break;
}
case KrylovSolverOptions::diagonal: {
P = new DiagPrecond(problem, A);
break;
}
case KrylovSolverOptions::incompleteCholeski: {
P = new IncompleteCholeskiFactorization(problem, A);
break;
}
case KrylovSolverOptions::multiGrid: {
if (meshShape == 0) {
throw ErrorHandler(__FILE__,__LINE__,
"Cartesian 3D mesh is mandatory to use multigrid precond",
ErrorHandler::normal);
}
P = new MultiGrid(problem,
static_cast<const SparseMatrix&>(A),
degreeOfFreedomSet,
*meshShape);
break;
}
default: {
throw ErrorHandler(__FILE__,__LINE__,
"unexpected preconditioner type",
ErrorHandler::unexpected);
}
}
ffout(2) << "- preconditioner: " << (*P).name() << '\n';
ffout(2) << "- preconditioner initialization\n" << std::flush;
(*P).initializes();
ffout(2) << " preconditioner initialization: done\n";
switch (type) {
case (KrylovSolverOptions::conjugateGradient): {
ConjugateGradient cg(static_cast<const Vector<real_t>&>(b),
A,
*P,
static_cast<Vector<real_t>&>(u));
break;
}
case (KrylovSolverOptions::biConjugateGradient): {
BiConjugateGradient bicg(static_cast<const Vector<real_t>&>(b),
A,
*P,
static_cast<Vector<real_t>&>(u));
break;
}
case (KrylovSolverOptions::biConjugateGradientStabilized): {
BiConjugateGradientStabilized bicgstab(static_cast<const Vector<real_t>&>(b),
A,
*P,
static_cast<Vector<real_t>&>(u));
break;
}
// case (KrylovSolverOptions::multiGrid): {
// MultiGrid<1, real, real_t> mg(static_cast<const Vector<real_t>&>(b),
// static_cast<SparseMatrix<real_t>&>(A),
// static_cast<Vector<real_t>&>(u),
// os);
// break;
// }
case (KrylovSolverOptions::iterativeLUFactorization): {
// IterativeLUFactorization<1,real,real_t>(static_cast<const Vector<real_t>&>(b),
// static_cast<SparseMatrix<real_t>&>(A),
// static_cast<Vector<real_t>&>(u));
throw ErrorHandler(__FILE__,__LINE__,
"not implemented",
ErrorHandler::unexpected);
break;
}
default: {
throw ErrorHandler(__FILE__,__LINE__,
"unexpected preconditioner type",
ErrorHandler::unexpected);
}
}
}
void KrylovSolver::solve(BaseVector& u, const Problem& problem)
{
// initializing the timer.
Timer t;
t.start();
ffout(2) << "Krylov solver\n";
ffout(2) << "- number of unknowns: "
<< static_cast<Vector<real_t>&>(u).size() << '\n';
KrylovSolverDim(u, __A, __b, problem, __meshShape, __type, __pType,
__degreeOfFreedomSet);
// measure the time
t.stop();
ffout(2) << "Krylov solver: done";
ffout(3) << " [cost: " << t << ']';
ffout(2) << '\n';
}
|