1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
// *****************************************************************************
// * This file is part of the FreeFileSync project. It is distributed under *
// * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 *
// * Copyright (C) Zenju (zenju AT freefilesync DOT org) - All Rights Reserved *
// *****************************************************************************
#ifndef BASIC_MATH_H_3472639843265675
#define BASIC_MATH_H_3472639843265675
#include <cassert>
#include <cmath>
#include <numbers>
#include "type_traits.h"
namespace numeric
{
template <class T> auto dist(T a, T b);
template <class T> int sign(T value); //returns one of {-1, 0, 1}
template <class T> bool isNull(T value); //...definitively fishy...
template <class T, class InputIterator> //precondition: range must be sorted!
auto roundToGrid(T val, InputIterator first, InputIterator last);
template <class N, class D> auto intDivRound(N numerator, D denominator);
template <class N, class D> auto intDivCeil (N numerator, D denominator);
template <class N, class D> auto intDivFloor(N numerator, D denominator);
template <size_t N, class T>
T power(T value);
double radToDeg(double rad); //convert unit [rad] into [°]
double degToRad(double degree); //convert unit [°] into [rad]
template <class InputIterator>
double arithmeticMean(InputIterator first, InputIterator last);
template <class RandomAccessIterator>
double median(RandomAccessIterator first, RandomAccessIterator last); //note: invalidates input range!
template <class InputIterator>
double stdDeviation(InputIterator first, InputIterator last, double* mean = nullptr); //estimate standard deviation (and thereby arithmetic mean)
//median absolute deviation: "mad / 0.6745" is a robust measure for standard deviation of a normal distribution
template <class RandomAccessIterator>
double mad(RandomAccessIterator first, RandomAccessIterator last); //note: invalidates input range!
template <class InputIterator>
double norm2(InputIterator first, InputIterator last);
//----------------------------------------------------------------------------------
//################# inline implementation #########################
template <class T> inline
auto dist(T a, T b) //return type might be different than T, e.g. std::chrono::duration instead of std::chrono::time_point
{
return a > b ? a - b : b - a;
}
template <class T> inline
int sign(T value) //returns one of {-1, 0, 1}
{
static_assert(std::is_signed_v<T>);
return value < 0 ? -1 : (value > 0 ? 1 : 0);
}
/*
part of C++11 now!
template <class InputIterator, class Compare> inline
std::pair<InputIterator, InputIterator> minMaxElement(InputIterator first, InputIterator last, Compare compLess)
{
//by factor 1.5 to 3 faster than boost::minmax_element (=two-step algorithm) for built-in types!
InputIterator itMin = first;
InputIterator itMax = first;
if (first != last)
{
auto minVal = *itMin; //nice speedup on 64 bit!
auto maxVal = *itMax; //
for (;;)
{
++first;
if (first == last)
break;
const auto val = *first;
if (compLess(maxVal, val))
{
itMax = first;
maxVal = val;
}
else if (compLess(val, minVal))
{
itMin = first;
minVal = val;
}
}
}
return {itMin, itMax};
}
template <class InputIterator> inline
std::pair<InputIterator, InputIterator> minMaxElement(InputIterator first, InputIterator last)
{
return minMaxElement(first, last, std::less());
}
*/
template <class T, class InputIterator> inline
auto roundToGrid(T val, InputIterator first, InputIterator last)
{
assert(std::is_sorted(first, last));
if (first == last)
return static_cast<decltype(*first)>(val);
InputIterator it = std::lower_bound(first, last, val);
if (it == last)
return *--last;
if (it == first)
return *first;
const auto nextVal = *it;
const auto prevVal = *--it;
return val - prevVal < nextVal - val ? prevVal : nextVal;
}
template <class T> inline
bool isNull(T value)
{
return abs(value) <= std::numeric_limits<T>::epsilon(); //epsilon is 0 für integral types => less-equal
}
template <class N, class D> inline
auto intDivRound(N num, D den)
{
using namespace zen;
static_assert(isInteger<N>&& isInteger<D>);
static_assert(isSignedInt<N> == isSignedInt<D>); //until further
assert(den != 0);
if constexpr (isSignedInt<N>)
{
if ((num < 0) != (den < 0))
return (num - den / 2) / den;
}
return (num + den / 2) / den;
}
template <class N, class D> inline
auto intDivCeil(N num, D den)
{
using namespace zen;
static_assert(isInteger<N>&& isInteger<D>);
static_assert(isSignedInt<N> == isSignedInt<D>); //until further
assert(den != 0);
if constexpr (isSignedInt<N>)
{
if ((num < 0) != (den < 0))
return num / den;
if (num < 0 && den < 0)
num += 2; //return (num + den + 1) / den
}
return (num + den - 1) / den;
}
template <class N, class D> inline
auto intDivFloor(N num, D den)
{
using namespace zen;
static_assert(isInteger<N>&& isInteger<D>);
static_assert(isSignedInt<N> == isSignedInt<D>); //until further
assert(den != 0);
if constexpr (isSignedInt<N>)
{
if ((num < 0) != (den < 0))
{
if (num < 0)
num += 2; //return (num - den + 1) / den
return (num - den - 1) / den;
}
}
return num / den;
}
namespace
{
template <size_t N, class T> struct PowerImpl;
//let's use non-recursive specializations to help the compiler
template <class T> struct PowerImpl<2, T> { static T result(T value) { return value * value; } };
template <class T> struct PowerImpl<3, T> { static T result(T value) { return value * value * value; } };
}
template <size_t N, class T> inline
T power(T value)
{
return PowerImpl<N, T>::result(value);
}
inline
double radToDeg(double rad)
{
return rad * (180.0 / std::numbers::pi);
}
inline
double degToRad(double degree)
{
return degree / (180.0 / std::numbers::pi);
}
template <class InputIterator> inline
double arithmeticMean(InputIterator first, InputIterator last)
{
size_t n = 0; //avoid random-access requirement for iterator!
double sum_xi = 0;
for (; first != last; ++first, ++n)
sum_xi += *first;
return n == 0 ? 0 : sum_xi / n;
}
template <class RandomAccessIterator> inline
double median(RandomAccessIterator first, RandomAccessIterator last) //note: invalidates input range!
{
const size_t n = last - first;
if (n == 0)
return 0;
std::nth_element(first, first + n / 2, last); //complexity: O(n)
const double midVal = *(first + n / 2);
if (n % 2 != 0)
return midVal;
else //n is even and >= 2 in this context: return mean of two middle values
return 0.5 * (*std::max_element(first, first + n / 2) + midVal); //this operation is the reason why median() CANNOT support a comparison predicate!!!
}
template <class RandomAccessIterator> inline
double mad(RandomAccessIterator first, RandomAccessIterator last) //note: invalidates input range!
{
//https://en.wikipedia.org/wiki/Median_absolute_deviation
const size_t n = last - first;
if (n == 0)
return 0;
const double m = median(first, last);
//the second median needs to operate on absolute residuals => avoid transforming input range which may have less than double precision!
auto lessMedAbs = [m](double lhs, double rhs) { return abs(lhs - m) < abs(rhs - m); };
std::nth_element(first, first + n / 2, last, lessMedAbs); //complexity: O(n)
const double midVal = abs(*(first + n / 2) - m);
if (n % 2 != 0)
return midVal;
else //n is even and >= 2 in this context: return mean of two middle values
return 0.5 * (abs(*std::max_element(first, first + n / 2, lessMedAbs) - m) + midVal);
}
template <class InputIterator> inline
double stdDeviation(InputIterator first, InputIterator last, double* arithMean)
{
//implementation minimizing rounding errors, see: https://en.wikipedia.org/wiki/Standard_deviation
//combined with technique avoiding overflow, see: https://www.netlib.org/blas/dnrm2.f -> only 10% performance degradation
size_t n = 0;
double mean = 0;
double q = 0;
double scale = 1;
for (; first != last; ++first)
{
++n;
const double val = *first - mean;
if (abs(val) > scale)
{
q = (n - 1.0) / n + q * power<2>(scale / val);
scale = abs(val);
}
else
q += (n - 1.0) * power<2>(val / scale) / n;
mean += val / n;
}
if (arithMean)
*arithMean = mean;
return n <= 1 ? 0 : std::sqrt(q / (n - 1)) * scale;
}
template <class InputIterator> inline
double norm2(InputIterator first, InputIterator last)
{
double result = 0;
double scale = 1;
for (; first != last; ++first)
{
const double tmp = abs(*first);
if (tmp > scale)
{
result = 1 + result * power<2>(scale / tmp);
scale = tmp;
}
else
result += power<2>(tmp / scale);
}
return std::sqrt(result) * scale;
}
}
#endif //BASIC_MATH_H_3472639843265675
|