1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682
|
// *****************************************************************************
// * This file is part of the FreeFileSync project. It is distributed under *
// * GNU General Public License: https://www.gnu.org/licenses/gpl-3.0 *
// * Copyright (C) Zenju (zenju AT freefilesync DOT org) - All Rights Reserved *
// *****************************************************************************
#ifndef STRING_BASE_H_083217454562342526
#define STRING_BASE_H_083217454562342526
#include <atomic>
#include <utility> //std::exchange
#include "string_tools.h"
//Zbase - a policy based string class optimizing performance and flexibility
namespace zen
{
/* Allocator Policy:
-----------------
void* allocate(size_t size) //throw std::bad_alloc
void deallocate(void* ptr)
size_t calcCapacity(size_t length) */
class AllocatorOptimalSpeed //exponential growth + min size
{
protected:
//::operator new/delete show same performance characterisics like malloc()/free()!
static void* allocate(size_t size) { return ::operator new (size); } //throw std::bad_alloc
static void deallocate(void* ptr) { ::operator delete (ptr); }
static size_t calcCapacity(size_t length) { return std::max<size_t>(16, std::max(length + length / 2, length)); }
//- size_t might overflow! => better catch here than return a too small size covering up the real error: a way too large length!
//- any growth rate should not exceed golden ratio: 1.618033989
};
class AllocatorOptimalMemory //no wasted memory, but more reallocations required when manipulating string
{
protected:
static void* allocate(size_t size) { return ::operator new (size); } //throw std::bad_alloc
static void deallocate(void* ptr) { ::operator delete (ptr); }
static size_t calcCapacity(size_t length) { return length; }
};
/* Storage Policy:
---------------
template <typename Char, //Character Type
class AP> //Allocator Policy
Char* create(size_t size)
Char* create(size_t size, size_t minCapacity)
Char* clone(Char* ptr)
void destroy(Char* ptr) //must handle "destroy(nullptr)"!
bool canWrite(const Char* ptr, size_t minCapacity) //needs to be checked before writing to "ptr"
size_t length(const Char* ptr)
void setLength(Char* ptr, size_t newLength) */
template <class Char, //Character Type
class AP> //Allocator Policy
class StorageDeepCopy : public AP
{
protected:
~StorageDeepCopy() {}
Char* create(size_t size) { return create(size, size); }
Char* create(size_t size, size_t minCapacity)
{
assert(size <= minCapacity);
const size_t newCapacity = AP::calcCapacity(minCapacity);
assert(newCapacity >= minCapacity);
Descriptor* const newDescr = static_cast<Descriptor*>(this->allocate(sizeof(Descriptor) + (newCapacity + 1) * sizeof(Char))); //throw std::bad_alloc
new (newDescr) Descriptor(size, newCapacity);
return reinterpret_cast<Char*>(newDescr + 1); //alignment note: "newDescr + 1" is Descriptor-aligned, which is larger than alignment for Char-array! => no problem!
}
Char* clone(Char* ptr)
{
const size_t len = length(ptr);
Char* newData = create(len); //throw std::bad_alloc
std::copy(ptr, ptr + len + 1, newData);
return newData;
}
void destroy(Char* ptr)
{
if (!ptr) return; //support "destroy(nullptr)"
Descriptor* const d = descr(ptr);
d->~Descriptor();
this->deallocate(d);
}
//this needs to be checked before writing to "ptr"
static bool canWrite(const Char* ptr, size_t minCapacity) { return minCapacity <= descr(ptr)->capacity; }
static size_t size(const Char* ptr) { return descr(ptr)->length; }
static void setLength(Char* ptr, size_t newLength)
{
assert(canWrite(ptr, newLength));
descr(ptr)->length = newLength;
}
private:
struct Descriptor
{
Descriptor(size_t len, size_t cap) :
length (static_cast<uint32_t>(len)),
capacity(static_cast<uint32_t>(cap)) {}
uint32_t length;
const uint32_t capacity; //allocated size without null-termination
};
static Descriptor* descr( Char* ptr) { return reinterpret_cast< Descriptor*>(ptr) - 1; }
static const Descriptor* descr(const Char* ptr) { return reinterpret_cast<const Descriptor*>(ptr) - 1; }
};
template <class Char, //Character Type
class AP> //Allocator Policy
class StorageRefCountThreadSafe : public AP
{
protected:
~StorageRefCountThreadSafe() {}
Char* create(size_t size) { return create(size, size); }
Char* create(size_t size, size_t minCapacity)
{
assert(size <= minCapacity);
if (minCapacity == 0) //perf: avoid memory allocation for empty string
{
++globalEmptyString.descr.refCount;
return &globalEmptyString.nullTerm;
}
const size_t newCapacity = AP::calcCapacity(minCapacity);
assert(newCapacity >= minCapacity);
Descriptor* const newDescr = static_cast<Descriptor*>(this->allocate(sizeof(Descriptor) + (newCapacity + 1) * sizeof(Char))); //throw std::bad_alloc
new (newDescr) Descriptor(size, newCapacity);
return reinterpret_cast<Char*>(newDescr + 1);
}
static Char* clone(Char* ptr)
{
++descr(ptr)->refCount;
return ptr;
}
void destroy(Char* ptr)
{
assert(ptr != reinterpret_cast<Char*>(0x1)); //detect double-deletion
if (!ptr) //support "destroy(nullptr)"
{
return;
}
Descriptor* const d = descr(ptr);
if (--(d->refCount) == 0) //operator--() is overloaded to decrement and evaluate in a single atomic operation!
{
d->~Descriptor();
this->deallocate(d);
}
}
static bool canWrite(const Char* ptr, size_t minCapacity) //needs to be checked before writing to "ptr"
{
const Descriptor* const d = descr(ptr);
assert(d->refCount > 0);
return d->refCount == 1 && minCapacity <= d->capacity;
}
static size_t size(const Char* ptr) { return descr(ptr)->length; }
static void setLength(Char* ptr, size_t newLength)
{
assert(canWrite(ptr, newLength));
descr(ptr)->length = static_cast<uint32_t>(newLength);
}
private:
struct Descriptor
{
constexpr Descriptor(size_t len, size_t cap) :
length (static_cast<uint32_t>(len)),
capacity(static_cast<uint32_t>(cap))
{
static_assert(decltype(refCount)::is_always_lock_free);
}
std::atomic<uint32_t> refCount{1}; //std:atomic is uninitialized by default!
uint32_t length;
const uint32_t capacity; //allocated size without null-termination
};
static Descriptor* descr( Char* ptr) { return reinterpret_cast< Descriptor*>(ptr) - 1; }
static const Descriptor* descr(const Char* ptr) { return reinterpret_cast<const Descriptor*>(ptr) - 1; }
struct GlobalEmptyString
{
Descriptor descr{0 /*length*/, 0 /*capacity*/};
Char nullTerm = 0;
};
static_assert(offsetof(GlobalEmptyString, nullTerm) - offsetof(GlobalEmptyString, descr) == sizeof(Descriptor), "no gap!");
static_assert(std::is_trivially_destructible_v<GlobalEmptyString>, "this memory needs to live forever");
inline static constinit GlobalEmptyString globalEmptyString; //constinit: dodge static initialization order fiasco!
};
template <class Char>
using DefaultStoragePolicy = StorageRefCountThreadSafe<Char, AllocatorOptimalSpeed>;
//################################################################################################################################################################
//perf note: interestingly StorageDeepCopy and StorageRefCountThreadSafe show same performance in FFS comparison
template <class Char, //Character Type
template <class> class SP = DefaultStoragePolicy> //Storage Policy
class Zbase : public SP<Char>
{
public:
Zbase();
Zbase(const Char* str) : Zbase(str, str + strLength(str)) {} //implicit conversion from a C-string!
Zbase(const Char* str, size_t len) : Zbase(str, str + len) {}
explicit Zbase(const std::basic_string_view<Char> view) : Zbase(view.begin(), view.end()) {}
Zbase(size_t count, Char fillChar);
template <class RandomAccessIterator>
Zbase(RandomAccessIterator first, RandomAccessIterator last);
Zbase(const Zbase& str);
Zbase(Zbase&& tmp) noexcept;
//explicit Zbase(Char ch); //dangerous if implicit: Char buffer[]; return buffer[0]; ups... forgot &, but not a compiler error! //-> non-standard extension!!!
~Zbase();
//operator const Char* () const; //NO implicit conversion to a C-string!! Many problems... one of them: if we forget to provide operator overloads, it'll just work with a Char*...
operator std::basic_string_view<Char>() const& noexcept { return {data(), size()}; }
//operator std::basic_string_view<Char>() const&& = delete; //=> probably a bug!
//STL accessors
using iterator = Char*;
using const_iterator = const Char*;
using reference = Char&;
using const_reference = const Char&;
using value_type = Char;
iterator begin();
iterator end ();
const_iterator begin () const { return rawStr_; }
const_iterator end () const { return rawStr_ + size(); }
const_iterator cbegin() const { return begin(); }
const_iterator cend () const { return end (); }
//std::string functions
size_t length() const { return size(); }
size_t size () const;
const Char* c_str() const { return rawStr_; } //C-string format with 0-termination
const Char* data() const { return &*begin(); }
/**/ Char* data() { return &*begin(); }
const Char& operator[](size_t pos) const;
/**/ Char& operator[](size_t pos);
bool empty() const { return size() == 0; }
void clear();
#if 0 //avoid redundant std::string API bloat!
size_t find (const Zbase& str, size_t pos = 0) const; //
size_t find (const Char* str, size_t pos = 0) const; //
size_t find (Char ch, size_t pos = 0) const; //returns "npos" if not found
size_t rfind(Char ch, size_t pos = npos) const; //
size_t rfind(const Char* str, size_t pos = npos) const; //
#endif
//Zbase& replace(size_t pos1, size_t n1, const Zbase& str);
void reserve(size_t minCapacity);
Zbase& assign(const Char* str, size_t len) { return assign(str, str + len); }
Zbase& append(const Char* str, size_t len) { return append(str, str + len); }
template <class RandomAccessIterator> Zbase& assign(RandomAccessIterator first, RandomAccessIterator last);
template <class RandomAccessIterator> Zbase& append(RandomAccessIterator first, RandomAccessIterator last);
void resize(size_t newSize, Char fillChar = 0);
void swap(Zbase& str) { std::swap(rawStr_, str.rawStr_); }
void push_back(Char val) { operator+=(val); } //STL access
void pop_back();
Zbase& operator=(Zbase&& tmp) noexcept;
Zbase& operator=(const Zbase& str);
Zbase& operator=(const Char* str) { return assign(str, strLength(str)); }
Zbase& operator=(Char ch) { return assign(&ch, 1); }
Zbase& operator+=(const Zbase& str) { return append(str.c_str(), str.size()); }
Zbase& operator+=(const Char* str) { return append(str, strLength(str)); }
Zbase& operator+=(Char ch) { return append(&ch, 1); }
Zbase& operator+=(const std::basic_string_view<Char> str) { return append(str.begin(), str.end()); }
static const size_t npos = static_cast<size_t>(-1);
inline friend Zbase operator+( const Char* lhs, const Zbase& rhs) { return Zbase(lhs, strLength(lhs), rhs.c_str(), rhs.size()); }
inline friend Zbase operator+( Char lhs, const Zbase& rhs) { return Zbase(&lhs, 1, rhs.c_str(), rhs.size()); }
inline friend Zbase operator+(const std::basic_string_view<Char> lhs, const Zbase& rhs) { return Zbase(lhs.data(), lhs.size(), rhs.c_str(), rhs.size()); }
private:
Zbase (int) = delete; //
Zbase(size_t count, int) = delete; //
Zbase& operator= (int) = delete; //detect usage errors by creating an intentional ambiguity with "Char"
Zbase& operator+= (int) = delete; //
void push_back (int) = delete; //
Zbase (std::nullptr_t) = delete;
Zbase(size_t count, std::nullptr_t) = delete;
Zbase& operator= (std::nullptr_t) = delete;
Zbase& operator+= (std::nullptr_t) = delete;
void push_back (std::nullptr_t) = delete;
//not part of std::string API => private:
Zbase(const Char* str1, size_t len1, const Char* str2, size_t len2);
//alternative: Zbase() + reserve() + 2 x append()
Char* rawStr_;
};
template <class Char, template <class> class SP> bool operator==(const Zbase<Char, SP>& lhs, const Zbase<Char, SP>& rhs);
template <class Char, template <class> class SP> bool operator==(const Zbase<Char, SP>& lhs, const Char* rhs);
template <class Char, template <class> class SP> inline bool operator==(const Char* lhs, const Zbase<Char, SP>& rhs) { return operator==(rhs, lhs); }
//follow convention + compare by unsigned char; alternative: std::lexicographical_compare_three_way + reinterpret_cast<const std::make_unsigned_t<Char>*>()
template <class Char, template <class> class SP> std::strong_ordering operator<=>(const Zbase<Char, SP>& lhs, const Zbase<Char, SP>& rhs) { return compareString(lhs, rhs); }
template <class Char, template <class> class SP> std::strong_ordering operator<=>(const Zbase<Char, SP>& lhs, const Char* rhs) { return compareString(lhs, rhs); }
template <class Char, template <class> class SP> std::strong_ordering operator<=>(const Char* lhs, const Zbase<Char, SP>& rhs) { return compareString(lhs, rhs); }
template <class Char, template <class> class SP> inline Zbase<Char, SP> operator+(const Zbase<Char, SP>& lhs, const Zbase<Char, SP>& rhs) { return Zbase<Char, SP>(lhs) += rhs; }
template <class Char, template <class> class SP> inline Zbase<Char, SP> operator+(const Zbase<Char, SP>& lhs, const Char* rhs) { return Zbase<Char, SP>(lhs) += rhs; }
template <class Char, template <class> class SP> inline Zbase<Char, SP> operator+(const Zbase<Char, SP>& lhs, Char rhs) { return Zbase<Char, SP>(lhs) += rhs; }
template <class Char, template <class> class SP> inline Zbase<Char, SP> operator+(const Zbase<Char, SP>& lhs, const std::basic_string_view<Char> rhs) { return Zbase<Char, SP>(lhs) += rhs; }
//don't use unified first argument but save one move-construction in the r-value case instead!
template <class Char, template <class> class SP> inline Zbase<Char, SP> operator+(Zbase<Char, SP>&& lhs, const Zbase<Char, SP>& rhs) { return std::move(lhs += rhs); } //the move *is* needed!!!
template <class Char, template <class> class SP> inline Zbase<Char, SP> operator+(Zbase<Char, SP>&& lhs, const Char* rhs) { return std::move(lhs += rhs); } //lhs, is an l-value parameter...
template <class Char, template <class> class SP> inline Zbase<Char, SP> operator+(Zbase<Char, SP>&& lhs, Char rhs) { return std::move(lhs += rhs); } //and not a local variable => no copy elision
template <class Char, template <class> class SP> inline Zbase<Char, SP> operator+(Zbase<Char, SP>&& lhs, const std::basic_string_view<Char> rhs) { return std::move(lhs += rhs); }
template <class Char, template <class> class SP> inline Zbase<Char, SP> operator+(const Zbase<Char, SP>&, int) = delete; //detect usage errors
template <class Char, template <class> class SP> inline Zbase<Char, SP> operator+(int, const Zbase<Char, SP>&) = delete; //
//################################# implementation ########################################
template <class Char, template <class> class SP> inline
Zbase<Char, SP>::Zbase()
{
rawStr_ = this->create(0);
rawStr_[0] = 0;
}
template <class Char, template <class> class SP>
template <class RandomAccessIterator> inline
Zbase<Char, SP>::Zbase(RandomAccessIterator first, RandomAccessIterator last)
{
rawStr_ = this->create(last - first);
*std::copy(first, last, rawStr_) = 0;
}
template <class Char, template <class> class SP> inline
Zbase<Char, SP>::Zbase(size_t count, Char fillChar)
{
rawStr_ = this->create(count);
std::fill(rawStr_, rawStr_ + count, fillChar);
rawStr_[count] = 0;
}
template <class Char, template <class> class SP> inline
Zbase<Char, SP>::Zbase(const Zbase<Char, SP>& str)
{
rawStr_ = this->clone(str.rawStr_);
}
template <class Char, template <class> class SP> inline
Zbase<Char, SP>::Zbase(Zbase<Char, SP>&& tmp) noexcept
{
rawStr_ = std::exchange(tmp.rawStr_, nullptr);
//usually nullptr would violate the class invarants, but it is good enough for the destructor!
//caveat: do not increment ref-count of an unshared string! We'd lose optimization opportunity of reusing its memory!
}
template <class Char, template <class> class SP> inline
Zbase<Char, SP>::Zbase(const Char* str1, size_t len1, const Char* str2, size_t len2)
{
rawStr_ = this->create(len1 + len2);
std::copy (str1, str1 + len1, rawStr_);
*std::copy(str2, str2 + len2, rawStr_ + len1) = 0;
}
template <class Char, template <class> class SP> inline
Zbase<Char, SP>::~Zbase()
{
static_assert(noexcept(this->~Zbase())); //has exception spec of compiler-generated destructor by default
this->destroy(rawStr_); //rawStr_ may be nullptr; see move constructor!
}
#if 0 //avoid redundant std::string API bloat!
template <class Char, template <class> class SP> inline
size_t Zbase<Char, SP>::find(const Zbase& str, size_t pos) const //returns "npos" if not found
{
assert(pos <= size());
const size_t len = size();
const Char* thisEnd = begin() + len; //respect embedded 0
const Char* it = searchFirst(begin() + std::min(pos, len), thisEnd,
str.begin(), str.end());
return it == thisEnd ? npos : it - begin();
}
template <class Char, template <class> class SP> inline
size_t Zbase<Char, SP>::find(const Char* str, size_t pos) const //returns "npos" if not found
{
assert(pos <= size());
const size_t len = size();
const Char* thisEnd = begin() + len; //respect embedded 0
const Char* it = searchFirst(begin() + std::min(pos, len), thisEnd,
str, str + strLength(str));
return it == thisEnd ? npos : it - begin();
}
template <class Char, template <class> class SP> inline
size_t Zbase<Char, SP>::find(Char ch, size_t pos) const //returns "npos" if not found
{
assert(pos <= size());
const size_t len = size();
const Char* thisEnd = begin() + len; //respect embedded 0
const Char* it = std::find(begin() + std::min(pos, len), thisEnd, ch);
return it == thisEnd ? npos : it - begin();
}
template <class Char, template <class> class SP> inline
size_t Zbase<Char, SP>::rfind(Char ch, size_t pos) const //returns "npos" if not found
{
assert(pos == npos || pos <= size());
const size_t len = size();
const Char* currEnd = begin() + (pos == npos ? len : std::min(pos + 1, len));
const Char* it = findLast(begin(), currEnd, ch);
return it == currEnd ? npos : it - begin();
}
template <class Char, template <class> class SP> inline
size_t Zbase<Char, SP>::rfind(const Char* str, size_t pos) const //returns "npos" if not found
{
assert(pos == npos || pos <= size());
const size_t strLen = strLength(str);
const size_t len = size();
const Char* currEnd = begin() + (pos == npos ? len : std::min(pos + strLen, len));
const Char* it = searchLast(begin(), currEnd,
str, str + strLen);
return it == currEnd ? npos : it - begin();
}
#endif
template <class Char, template <class> class SP> inline
void Zbase<Char, SP>::resize(size_t newSize, Char fillChar)
{
const size_t oldSize = size();
if (this->canWrite(rawStr_, newSize))
{
if (oldSize < newSize)
std::fill(rawStr_ + oldSize, rawStr_ + newSize, fillChar);
rawStr_[newSize] = 0;
this->setLength(rawStr_, newSize);
}
else
{
Char* newStr = this->create(newSize);
if (oldSize < newSize)
{
std::copy(rawStr_, rawStr_ + oldSize, newStr);
std::fill(newStr + oldSize, newStr + newSize, fillChar);
}
else
std::copy(rawStr_, rawStr_ + newSize, newStr);
newStr[newSize] = 0;
this->destroy(rawStr_);
rawStr_ = newStr;
}
}
template <class Char, template <class> class SP> inline
bool operator==(const Zbase<Char, SP>& lhs, const Zbase<Char, SP>& rhs)
{
return lhs.size() == rhs.size() && std::equal(lhs.begin(), lhs.end(), rhs.begin()); //respect embedded 0
}
template <class Char, template <class> class SP> inline
bool operator==(const Zbase<Char, SP>& lhs, const Char* rhs)
{
return lhs.size() == strLength(rhs) && std::equal(lhs.begin(), lhs.end(), rhs); //respect embedded 0
}
template <class Char, template <class> class SP> inline
size_t Zbase<Char, SP>::size() const
{
return SP<Char>::size(rawStr_);
}
template <class Char, template <class> class SP> inline
const Char& Zbase<Char, SP>::operator[](size_t pos) const
{
assert(pos < size()); //design by contract! no runtime check!
return rawStr_[pos];
}
template <class Char, template <class> class SP> inline
Char& Zbase<Char, SP>::operator[](size_t pos)
{
reserve(size()); //make unshared!
assert(pos < size()); //design by contract! no runtime check!
return rawStr_[pos];
}
template <class Char, template <class> class SP> inline
auto Zbase<Char, SP>::begin() -> iterator
{
reserve(size()); //make unshared!
return rawStr_;
}
template <class Char, template <class> class SP> inline
auto Zbase<Char, SP>::end() -> iterator
{
return begin() + size();
}
template <class Char, template <class> class SP> inline
void Zbase<Char, SP>::clear()
{
if (!empty())
{
if (this->canWrite(rawStr_, 0))
{
rawStr_[0] = 0; //keep allocated memory
this->setLength(rawStr_, 0); //
}
else
*this = Zbase();
}
}
template <class Char, template <class> class SP> inline
void Zbase<Char, SP>::reserve(size_t minCapacity) //make unshared and check capacity
{
if (!this->canWrite(rawStr_, minCapacity))
{
//allocate a new string
const size_t len = size();
Char* newStr = this->create(len, std::max(len, minCapacity)); //reserve() must NEVER shrink the string: logical const!
*std::copy(rawStr_, rawStr_ + len, newStr) = 0;
this->destroy(rawStr_);
rawStr_ = newStr;
}
}
template <class Char, template <class> class SP>
template <class RandomAccessIterator> inline
Zbase<Char, SP>& Zbase<Char, SP>::assign(RandomAccessIterator first, RandomAccessIterator last)
{
const size_t len = last - first;
if (this->canWrite(rawStr_, len))
{
*std::copy(first, last, rawStr_) = 0;
this->setLength(rawStr_, len);
}
else
*this = Zbase(first, last);
return *this;
}
template <class Char, template <class> class SP>
template <class RandomAccessIterator> inline
Zbase<Char, SP>& Zbase<Char, SP>::append(RandomAccessIterator first, RandomAccessIterator last)
{
const size_t len = last - first; //std::distance(first, last);
if (len > 0) //avoid making this string unshared for no reason
{
const size_t thisLen = size();
reserve(thisLen + len); //make unshared and check capacity
*std::copy(first, last, rawStr_ + thisLen) = 0;
this->setLength(rawStr_, thisLen + len);
}
return *this;
}
//don't use unifying assignment but save one move-construction in the r-value case instead!
template <class Char, template <class> class SP> inline
Zbase<Char, SP>& Zbase<Char, SP>::operator=(const Zbase<Char, SP>& str)
{
Zbase<Char, SP>(str).swap(*this);
return *this;
}
template <class Char, template <class> class SP> inline
Zbase<Char, SP>& Zbase<Char, SP>::operator=(Zbase<Char, SP>&& tmp) noexcept
{
//don't swap() but end rawStr_ life time immediately
this->destroy(rawStr_);
rawStr_ = std::exchange(tmp.rawStr_, nullptr);
return *this;
}
template <class Char, template <class> class SP> inline
void Zbase<Char, SP>::pop_back()
{
const size_t len = size();
assert(len > 0);
if (len > 0)
resize(len - 1);
}
}
//std::hash specialization in global namespace
template <class Char, template <class> class SP>
struct std::hash<zen::Zbase<Char, SP>>
{
using is_transparent = int; //allow heterogenous lookup!
template <class String>
size_t operator()(const String& str) const { return zen::hashString<size_t>(str); }
};
template <class Char, template <class> class SP>
struct std::equal_to<zen::Zbase<Char, SP>>
{
using is_transparent = int; //enable heterogenous lookup!
template <class String1, class String2>
bool operator()(const String1& lhs, const String2& rhs) const { return zen::equalString(lhs, rhs); }
};
#endif //STRING_BASE_H_083217454562342526
|