1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
// ==========================================================
// Bitmap conversion routines
// Thresholding and halftoning functions
// Design and implementation by
// - Herv Drolon (drolon@infonie.fr)
// - Dennis Lim (dlkj@users.sourceforge.net)
// - Thomas Chmielewski (Chmielewski.Thomas@oce.de)
//
// Main reference : Ulichney, R., Digital Halftoning, The MIT Press, Cambridge, MA, 1987
//
// This file is part of FreeImage 3
//
// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
// THIS DISCLAIMER.
//
// Use at your own risk!
// ==========================================================
#include "FreeImage.h"
#include "Utilities.h"
static const int WHITE = 255;
static const int BLACK = 0;
// Floyd & Steinberg error diffusion dithering
// This algorithm use the following filter
// * 7
// 3 5 1 (1/16)
static FIBITMAP* FloydSteinberg(FIBITMAP *dib) {
#define RAND(RN) (((seed = 1103515245 * seed + 12345) >> 12) % (RN))
#define INITERR(X, Y) (((int) X) - (((int) Y) ? WHITE : BLACK) + ((WHITE/2)-((int)X)) / 2)
int seed = 0;
int x, y, p, pixel, threshold, error;
int width, height, pitch;
BYTE *bits, *new_bits;
FIBITMAP *new_dib = NULL;
// allocate a 8-bit DIB
width = FreeImage_GetWidth(dib);
height = FreeImage_GetHeight(dib);
pitch = FreeImage_GetPitch(dib);
new_dib = FreeImage_Allocate(width, height, 8);
if(NULL == new_dib) return NULL;
// allocate space for error arrays
int *lerr = (int*)malloc (width * sizeof(int));
int *cerr = (int*)malloc (width * sizeof(int));
memset(lerr, 0, width * sizeof(int));
memset(cerr, 0, width * sizeof(int));
// left border
error = 0;
for(y = 0; y < height; y++) {
bits = FreeImage_GetScanLine(dib, y);
new_bits = FreeImage_GetScanLine(new_dib, y);
threshold = (WHITE / 2 + RAND(129) - 64);
pixel = bits[0] + error;
p = (pixel > threshold) ? WHITE : BLACK;
error = pixel - p;
new_bits[0] = (BYTE)p;
}
// right border
error = 0;
for(y = 0; y < height; y++) {
bits = FreeImage_GetScanLine(dib, y);
new_bits = FreeImage_GetScanLine(new_dib, y);
threshold = (WHITE / 2 + RAND(129) - 64);
pixel = bits[width-1] + error;
p = (pixel > threshold) ? WHITE : BLACK;
error = pixel - p;
new_bits[width-1] = (BYTE)p;
}
// top border
bits = FreeImage_GetBits(dib);
new_bits = FreeImage_GetBits(new_dib);
error = 0;
for(x = 0; x < width; x++) {
threshold = (WHITE / 2 + RAND(129) - 64);
pixel = bits[x] + error;
p = (pixel > threshold) ? WHITE : BLACK;
error = pixel - p;
new_bits[x] = (BYTE)p;
lerr[x] = INITERR(bits[x], p);
}
// interior bits
for(y = 1; y < height; y++) {
// scan left to right
bits = FreeImage_GetScanLine(dib, y);
new_bits = FreeImage_GetScanLine(new_dib, y);
cerr[0] = INITERR(bits[0], new_bits[0]);
for(x = 1; x < width - 1; x++) {
error = (lerr[x-1] + 5 * lerr[x] + 3 * lerr[x+1] + 7 * cerr[x-1]) / 16;
pixel = bits[x] + error;
if(pixel > (WHITE / 2)) {
new_bits[x] = WHITE;
cerr[x] = pixel - WHITE;
} else {
new_bits[x] = BLACK;
cerr[x] = pixel - BLACK;
}
}
// set errors for ends of the row
cerr[0] = INITERR (bits[0], new_bits[0]);
cerr[width - 1] = INITERR (bits[width - 1], new_bits[width - 1]);
// swap error buffers
int *terr = lerr; lerr = cerr; cerr = terr;
}
free(lerr);
free(cerr);
return new_dib;
}
// ==========================================================
// Bayer ordered dispersed dot dithering
//
// Function taken from "Ordered Dithering, Stephen Hawley, Graphics Gems, Academic Press, 1990"
// This function is used to generate a Bayer dithering matrice whose dimension are 2^size by 2^size
//
static int dithervalue(int x, int y, int size) {
int d = 0;
/*
* calculate the dither value at a particular
* (x, y) over the size of the matrix.
*/
while (size-->0) {
/* Think of d as the density. At every iteration,
* d is shifted left one and a new bit is put in the
* low bit based on x and y. If x is odd and y is even,
* or x is even and y is odd, a bit is put in. This
* generates the checkerboard seen in dithering.
* This quantity is shifted left again and the low bit of
* y is added in.
* This whole thing interleaves a checkerboard bit pattern
* and y's bits, which is the value you want.
*/
d = (d <<1 | (x&1 ^ y&1))<<1 | y&1;
x >>= 1;
y >>= 1;
}
return d;
}
// Ordered dithering with a Bayer matrix of size 2^order by 2^order
//
static FIBITMAP* OrderedDispersedDot(FIBITMAP *dib, int order) {
int x, y;
int width, height;
BYTE *bits, *new_bits;
FIBITMAP *new_dib = NULL;
// allocate a 8-bit DIB
width = FreeImage_GetWidth(dib);
height = FreeImage_GetHeight(dib);
new_dib = FreeImage_Allocate(width, height, 8);
if(NULL == new_dib) return NULL;
// build the dithering matrix
int l = (1 << order); // square of dither matrix order; the dimensions of the matrix
BYTE *matrix = (BYTE*)malloc(l*l * sizeof(BYTE));
for(int i = 0; i < l*l; i++) {
// according to "Purdue University: Digital Image Processing Laboratory: Image Halftoning, April 30th, 2006
matrix[i] = (BYTE)( 255 * (((double)dithervalue(i / l, i % l, order) + 0.5) / (l*l)) );
}
// perform the dithering
for(y = 0; y < height; y++) {
// scan left to right
bits = FreeImage_GetScanLine(dib, y);
new_bits = FreeImage_GetScanLine(new_dib, y);
for(x = 0; x < width; x++) {
if(bits[x] > matrix[(x % l) + l * (y % l)]) {
new_bits[x] = WHITE;
} else {
new_bits[x] = BLACK;
}
}
}
free(matrix);
return new_dib;
}
// ==========================================================
// Ordered clustered dot dithering
//
// NB : The predefined dither matrices are the same as matrices used in
// the Netpbm package (http://netpbm.sourceforge.net) and are defined in Ulichney's book.
// See also : The newsprint web site at http://www.cl.cam.ac.uk/~and1000/newsprint/
// for more technical info on this dithering technique
//
static FIBITMAP* OrderedClusteredDot(FIBITMAP *dib, int order) {
// Order-3 clustered dithering matrix.
int cluster3[] = {
9,11,10, 8, 6, 7,
12,17,16, 5, 0, 1,
13,14,15, 4, 3, 2,
8, 6, 7, 9,11,10,
5, 0, 1,12,17,16,
4, 3, 2,13,14,15
};
// Order-4 clustered dithering matrix.
int cluster4[] = {
18,20,19,16,13,11,12,15,
27,28,29,22, 4, 3, 2, 9,
26,31,30,21, 5, 0, 1,10,
23,25,24,17, 8, 6, 7,14,
13,11,12,15,18,20,19,16,
4, 3, 2, 9,27,28,29,22,
5, 0, 1,10,26,31,30,21,
8, 6, 7,14,23,25,24,17
};
// Order-8 clustered dithering matrix.
int cluster8[] = {
64, 69, 77, 87, 86, 76, 68, 67, 63, 58, 50, 40, 41, 51, 59, 60,
70, 94,100,109,108, 99, 93, 75, 57, 33, 27, 18, 19, 28, 34, 52,
78,101,114,116,115,112, 98, 83, 49, 26, 13, 11, 12, 15, 29, 44,
88,110,123,124,125,118,107, 85, 39, 17, 4, 3, 2, 9, 20, 42,
89,111,122,127,126,117,106, 84, 38, 16, 5, 0, 1, 10, 21, 43,
79,102,119,121,120,113, 97, 82, 48, 25, 8, 6, 7, 14, 30, 45,
71, 95,103,104,105, 96, 92, 74, 56, 32, 24, 23, 22, 31, 35, 53,
65, 72, 80, 90, 91, 81, 73, 66, 62, 55, 47, 37, 36, 46, 54, 61,
63, 58, 50, 40, 41, 51, 59, 60, 64, 69, 77, 87, 86, 76, 68, 67,
57, 33, 27, 18, 19, 28, 34, 52, 70, 94,100,109,108, 99, 93, 75,
49, 26, 13, 11, 12, 15, 29, 44, 78,101,114,116,115,112, 98, 83,
39, 17, 4, 3, 2, 9, 20, 42, 88,110,123,124,125,118,107, 85,
38, 16, 5, 0, 1, 10, 21, 43, 89,111,122,127,126,117,106, 84,
48, 25, 8, 6, 7, 14, 30, 45, 79,102,119,121,120,113, 97, 82,
56, 32, 24, 23, 22, 31, 35, 53, 71, 95,103,104,105, 96, 92, 74,
62, 55, 47, 37, 36, 46, 54, 61, 65, 72, 80, 90, 91, 81, 73, 66
};
int x, y, pixel;
int width, height;
BYTE *bits, *new_bits;
FIBITMAP *new_dib = NULL;
// allocate a 8-bit DIB
width = FreeImage_GetWidth(dib);
height = FreeImage_GetHeight(dib);
new_dib = FreeImage_Allocate(width, height, 8);
if(NULL == new_dib) return NULL;
// select the dithering matrix
int *matrix = NULL;
switch(order) {
case 3:
matrix = &cluster3[0];
break;
case 4:
matrix = &cluster4[0];
break;
case 8:
matrix = &cluster8[0];
break;
default:
return NULL;
}
// scale the dithering matrix
int l = 2 * order;
int scale = 256 / (l * order);
for(y = 0; y < l; y++) {
for(x = 0; x < l; x++) {
matrix[y*l + x] *= scale;
}
}
// perform the dithering
for(y = 0; y < height; y++) {
// scan left to right
bits = FreeImage_GetScanLine(dib, y);
new_bits = FreeImage_GetScanLine(new_dib, y);
for(x = 0; x < width; x++) {
pixel = bits[x];
if(pixel >= matrix[(y % l) + l * (x % l)]) {
new_bits[x] = WHITE;
} else {
new_bits[x] = BLACK;
}
}
}
return new_dib;
}
// ==========================================================
// Halftoning function
//
FIBITMAP * DLL_CALLCONV
FreeImage_Dither(FIBITMAP *dib, FREE_IMAGE_DITHER algorithm) {
FIBITMAP *input = NULL, *dib8 = NULL;
if(NULL == dib) return NULL;
int bpp = FreeImage_GetBPP(dib);
if(bpp == 1) {
// Just clone the dib and adjust the palette if needed
FIBITMAP *new_dib = FreeImage_Clone(dib);
if(NULL == new_dib) return NULL;
if(FreeImage_GetColorType(new_dib) == FIC_PALETTE) {
// Build a monochrome palette
RGBQUAD *pal = FreeImage_GetPalette(new_dib);
pal[0].rgbRed = pal[0].rgbGreen = pal[0].rgbBlue = 0;
pal[1].rgbRed = pal[1].rgbGreen = pal[1].rgbBlue = 255;
}
return new_dib;
}
// Convert the input dib to a 8-bit greyscale dib
//
switch(bpp) {
case 8:
if(FreeImage_GetColorType(dib) == FIC_MINISBLACK) {
input = dib;
} else {
input = FreeImage_ConvertToGreyscale(dib);
}
break;
case 4:
case 16:
case 24:
case 32:
input = FreeImage_ConvertToGreyscale(dib);
break;
}
if(NULL == input) return NULL;
// Apply the dithering algorithm
switch(algorithm) {
case FID_FS:
dib8 = FloydSteinberg(input);
break;
case FID_BAYER4x4:
dib8 = OrderedDispersedDot(input, 2);
break;
case FID_BAYER8x8:
dib8 = OrderedDispersedDot(input, 3);
break;
case FID_BAYER16x16:
dib8 = OrderedDispersedDot(input, 4);
break;
case FID_CLUSTER6x6:
dib8 = OrderedClusteredDot(input, 3);
break;
case FID_CLUSTER8x8:
dib8 = OrderedClusteredDot(input, 4);
break;
case FID_CLUSTER16x16:
dib8 = OrderedClusteredDot(input, 8);
break;
}
if(input != dib) {
FreeImage_Unload(input);
}
// Build a greyscale palette (needed by threshold)
RGBQUAD *grey_pal = FreeImage_GetPalette(dib8);
for(int i = 0; i < 256; i++) {
grey_pal[i].rgbRed = (BYTE)i;
grey_pal[i].rgbGreen = (BYTE)i;
grey_pal[i].rgbBlue = (BYTE)i;
}
// Convert to 1-bit
FIBITMAP *new_dib = FreeImage_Threshold(dib8, 128);
FreeImage_Unload(dib8);
return new_dib;
}
// ==========================================================
// Thresholding function
//
FIBITMAP * DLL_CALLCONV
FreeImage_Threshold(FIBITMAP *dib, BYTE T) {
FIBITMAP *dib8 = NULL;
if(NULL == dib) return NULL;
int bpp = FreeImage_GetBPP(dib);
if(bpp == 1) {
// Just clone the dib and adjust the palette if needed
FIBITMAP *new_dib = FreeImage_Clone(dib);
if(NULL == new_dib) return NULL;
if(FreeImage_GetColorType(new_dib) == FIC_PALETTE) {
// Build a monochrome palette
RGBQUAD *pal = FreeImage_GetPalette(new_dib);
pal[0].rgbRed = pal[0].rgbGreen = pal[0].rgbBlue = 0;
pal[1].rgbRed = pal[1].rgbGreen = pal[1].rgbBlue = 255;
}
return new_dib;
}
// Convert the input dib to a 8-bit greyscale dib
//
switch(bpp) {
case 8:
if(FreeImage_GetColorType(dib) == FIC_MINISBLACK) {
dib8 = dib;
} else {
dib8 = FreeImage_ConvertToGreyscale(dib);
}
break;
case 4:
case 16:
case 24:
case 32:
dib8 = FreeImage_ConvertToGreyscale(dib);
break;
}
if(NULL == dib8) return NULL;
// Allocate a new 1-bit DIB
int width = FreeImage_GetWidth(dib);
int height = FreeImage_GetHeight(dib);
FIBITMAP *new_dib = FreeImage_Allocate(width, height, 1);
if(NULL == new_dib) return NULL;
// Build a monochrome palette
RGBQUAD *pal = FreeImage_GetPalette(new_dib);
pal[0].rgbRed = pal[0].rgbGreen = pal[0].rgbBlue = 0;
pal[1].rgbRed = pal[1].rgbGreen = pal[1].rgbBlue = 255;
// Perform the thresholding
//
for(int y = 0; y < height; y++) {
BYTE *bits8 = FreeImage_GetScanLine(dib8, y);
BYTE *bits1 = FreeImage_GetScanLine(new_dib, y);
for(int x = 0; x < width; x++) {
if(bits8[x] < T) {
// Set bit(x, y) to 0
bits1[x >> 3] &= (0xFF7F >> (x & 0x7));
} else {
// Set bit(x, y) to 1
bits1[x >> 3] |= (0x80 >> (x & 0x7));
}
}
}
if(dib8 != dib) {
FreeImage_Unload(dib8);
}
return new_dib;
}
|