1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
// NeuQuant Neural-Net Quantization Algorithm
// ------------------------------------------
//
// Copyright (c) 1994 Anthony Dekker
//
// NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
// See "Kohonen neural networks for optimal colour quantization"
// in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
// for a discussion of the algorithm.
//
// Any party obtaining a copy of these files from the author, directly or
// indirectly, is granted, free of charge, a full and unrestricted irrevocable,
// world-wide, paid up, royalty-free, nonexclusive right and license to deal
// in this software and documentation files (the "Software"), including without
// limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons who receive
// copies from any such party to do so, with the only requirement being
// that this copyright notice remain intact.
///////////////////////////////////////////////////////////////////////
// History
// -------
// January 2001: Adaptation of the Neural-Net Quantization Algorithm
// for the FreeImage 2 library
// Author: Herv Drolon (drolon@infonie.fr)
// March 2004: Adaptation for the FreeImage 3 library (port to big endian processors)
// Author: Herv Drolon (drolon@infonie.fr)
// April 2004: Algorithm rewritten as a C++ class.
// Fixed a bug in the algorithm with handling of 4-byte boundary alignment.
// Author: Herv Drolon (drolon@infonie.fr)
///////////////////////////////////////////////////////////////////////
#include "Quantizers.h"
#include "FreeImage.h"
#include "Utilities.h"
// Four primes near 500 - assume no image has a length so large
// that it is divisible by all four primes
// ==========================================================
#define prime1 499
#define prime2 491
#define prime3 487
#define prime4 503
// ----------------------------------------------------------------
NNQuantizer::NNQuantizer(int PaletteSize)
{
netsize = PaletteSize;
maxnetpos = netsize - 1;
initrad = netsize < 8 ? 1 : (netsize >> 3);
initradius = (initrad * radiusbias);
network = NULL;
network = (pixel *)malloc(netsize * sizeof(pixel));
bias = (int *)malloc(netsize * sizeof(int));
freq = (int *)malloc(netsize * sizeof(int));
radpower = (int *)malloc(initrad * sizeof(int));
if( !network || !bias || !freq || !radpower ) {
if(network) free(network);
if(bias) free(bias);
if(freq) free(freq);
if(radpower) free(radpower);
throw "Not enough memory";
}
}
NNQuantizer::~NNQuantizer()
{
if(network) free(network);
if(bias) free(bias);
if(freq) free(freq);
if(radpower) free(radpower);
}
///////////////////////////////////////////////////////////////////////////
// Initialise network in range (0,0,0) to (255,255,255) and set parameters
// -----------------------------------------------------------------------
void NNQuantizer::initnet() {
int i, *p;
for (i = 0; i < netsize; i++) {
p = network[i];
p[FI_RGBA_BLUE] = p[FI_RGBA_GREEN] = p[FI_RGBA_RED] = (i << (netbiasshift+8))/netsize;
freq[i] = intbias/netsize; /* 1/netsize */
bias[i] = 0;
}
}
///////////////////////////////////////////////////////////////////////////////////////
// Unbias network to give byte values 0..255 and record position i to prepare for sort
// ------------------------------------------------------------------------------------
void NNQuantizer::unbiasnet() {
int i, j, temp;
for (i = 0; i < netsize; i++) {
for (j = 0; j < 3; j++) {
// OLD CODE: network[i][j] >>= netbiasshift;
// Fix based on bug report by Juergen Weigert jw@suse.de
temp = (network[i][j] + (1 << (netbiasshift - 1))) >> netbiasshift;
if (temp > 255) temp = 255;
network[i][j] = temp;
}
network[i][3] = i; // record colour no
}
}
//////////////////////////////////////////////////////////////////////////////////
// Insertion sort of network and building of netindex[0..255] (to do after unbias)
// -------------------------------------------------------------------------------
void NNQuantizer::inxbuild() {
int i,j,smallpos,smallval;
int *p,*q;
int previouscol,startpos;
previouscol = 0;
startpos = 0;
for (i = 0; i < netsize; i++) {
p = network[i];
smallpos = i;
smallval = p[FI_RGBA_GREEN]; // index on g
// find smallest in i..netsize-1
for (j = i+1; j < netsize; j++) {
q = network[j];
if (q[FI_RGBA_GREEN] < smallval) { // index on g
smallpos = j;
smallval = q[FI_RGBA_GREEN]; // index on g
}
}
q = network[smallpos];
// swap p (i) and q (smallpos) entries
if (i != smallpos) {
j = q[FI_RGBA_BLUE]; q[FI_RGBA_BLUE] = p[FI_RGBA_BLUE]; p[FI_RGBA_BLUE] = j;
j = q[FI_RGBA_GREEN]; q[FI_RGBA_GREEN] = p[FI_RGBA_GREEN]; p[FI_RGBA_GREEN] = j;
j = q[FI_RGBA_RED]; q[FI_RGBA_RED] = p[FI_RGBA_RED]; p[FI_RGBA_RED] = j;
j = q[3]; q[3] = p[3]; p[3] = j;
}
// smallval entry is now in position i
if (smallval != previouscol) {
netindex[previouscol] = (startpos+i)>>1;
for (j = previouscol+1; j < smallval; j++)
netindex[j] = i;
previouscol = smallval;
startpos = i;
}
}
netindex[previouscol] = (startpos+maxnetpos)>>1;
for (j = previouscol+1; j < 256; j++)
netindex[j] = maxnetpos; // really 256
}
///////////////////////////////////////////////////////////////////////////////
// Search for BGR values 0..255 (after net is unbiased) and return colour index
// ----------------------------------------------------------------------------
int NNQuantizer::inxsearch(int b, int g, int r) {
int i, j, dist, a, bestd;
int *p;
int best;
bestd = 1000; // biggest possible dist is 256*3
best = -1;
i = netindex[g]; // index on g
j = i-1; // start at netindex[g] and work outwards
while ((i < netsize) || (j >= 0)) {
if (i < netsize) {
p = network[i];
dist = p[FI_RGBA_GREEN] - g; // inx key
if (dist >= bestd)
i = netsize; // stop iter
else {
i++;
if (dist < 0)
dist = -dist;
a = p[FI_RGBA_BLUE] - b;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
a = p[FI_RGBA_RED] - r;
if (a<0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
if (j >= 0) {
p = network[j];
dist = g - p[FI_RGBA_GREEN]; // inx key - reverse dif
if (dist >= bestd)
j = -1; // stop iter
else {
j--;
if (dist < 0)
dist = -dist;
a = p[FI_RGBA_BLUE] - b;
if (a<0)
a = -a;
dist += a;
if (dist < bestd) {
a = p[FI_RGBA_RED] - r;
if (a<0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
best = p[3];
}
}
}
}
}
return best;
}
///////////////////////////////
// Search for biased BGR values
// ----------------------------
int NNQuantizer::contest(int b, int g, int r) {
// finds closest neuron (min dist) and updates freq
// finds best neuron (min dist-bias) and returns position
// for frequently chosen neurons, freq[i] is high and bias[i] is negative
// bias[i] = gamma*((1/netsize)-freq[i])
int i,dist,a,biasdist,betafreq;
int bestpos,bestbiaspos,bestd,bestbiasd;
int *p,*f, *n;
bestd = ~(((int) 1)<<31);
bestbiasd = bestd;
bestpos = -1;
bestbiaspos = bestpos;
p = bias;
f = freq;
for (i = 0; i < netsize; i++) {
n = network[i];
dist = n[FI_RGBA_BLUE] - b;
if (dist < 0)
dist = -dist;
a = n[FI_RGBA_GREEN] - g;
if (a < 0)
a = -a;
dist += a;
a = n[FI_RGBA_RED] - r;
if (a < 0)
a = -a;
dist += a;
if (dist < bestd) {
bestd = dist;
bestpos = i;
}
biasdist = dist - ((*p)>>(intbiasshift-netbiasshift));
if (biasdist < bestbiasd) {
bestbiasd = biasdist;
bestbiaspos = i;
}
betafreq = (*f >> betashift);
*f++ -= betafreq;
*p++ += (betafreq << gammashift);
}
freq[bestpos] += beta;
bias[bestpos] -= betagamma;
return bestbiaspos;
}
///////////////////////////////////////////////////////
// Move neuron i towards biased (b,g,r) by factor alpha
// ----------------------------------------------------
void NNQuantizer::altersingle(int alpha, int i, int b, int g, int r) {
int *n;
n = network[i]; // alter hit neuron
n[FI_RGBA_BLUE] -= (alpha * (n[FI_RGBA_BLUE] - b)) / initalpha;
n[FI_RGBA_GREEN] -= (alpha * (n[FI_RGBA_GREEN] - g)) / initalpha;
n[FI_RGBA_RED] -= (alpha * (n[FI_RGBA_RED] - r)) / initalpha;
}
////////////////////////////////////////////////////////////////////////////////////
// Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
// ---------------------------------------------------------------------------------
void NNQuantizer::alterneigh(int rad, int i, int b, int g, int r) {
int j, k, lo, hi, a;
int *p, *q;
lo = i - rad; if (lo < -1) lo = -1;
hi = i + rad; if (hi > netsize) hi = netsize;
j = i+1;
k = i-1;
q = radpower;
while ((j < hi) || (k > lo)) {
a = (*(++q));
if (j < hi) {
p = network[j];
p[FI_RGBA_BLUE] -= (a * (p[FI_RGBA_BLUE] - b)) / alpharadbias;
p[FI_RGBA_GREEN] -= (a * (p[FI_RGBA_GREEN] - g)) / alpharadbias;
p[FI_RGBA_RED] -= (a * (p[FI_RGBA_RED] - r)) / alpharadbias;
j++;
}
if (k > lo) {
p = network[k];
p[FI_RGBA_BLUE] -= (a * (p[FI_RGBA_BLUE] - b)) / alpharadbias;
p[FI_RGBA_GREEN] -= (a * (p[FI_RGBA_GREEN] - g)) / alpharadbias;
p[FI_RGBA_RED] -= (a * (p[FI_RGBA_RED] - r)) / alpharadbias;
k--;
}
}
}
/////////////////////
// Main Learning Loop
// ------------------
/**
Get a pixel sample at position pos. Handle 4-byte boundary alignment.
@param pos pixel position in a WxHx3 pixel buffer
@param b blue pixel component
@param g green pixel component
@param r red pixel component
*/
void NNQuantizer::getSample(long pos, int *b, int *g, int *r) {
// get equivalent pixel coordinates
// - assume it's a 24-bit image -
int x = pos % img_line;
int y = pos / img_line;
BYTE *bits = FreeImage_GetScanLine(dib_ptr, y) + x;
*b = bits[FI_RGBA_BLUE] << netbiasshift;
*g = bits[FI_RGBA_GREEN] << netbiasshift;
*r = bits[FI_RGBA_RED] << netbiasshift;
}
void NNQuantizer::learn(int sampling_factor) {
int i, j, b, g, r;
int radius, rad, alpha, step, delta, samplepixels;
int alphadec; // biased by 10 bits
long pos, lengthcount;
// image size as viewed by the scan algorithm
lengthcount = img_width * img_height * 3;
// number of samples used for the learning phase
samplepixels = lengthcount / (3 * sampling_factor);
// decrease learning rate after delta pixel presentations
delta = samplepixels / ncycles;
if(delta == 0) {
// avoid a 'divide by zero' error with very small images
delta = 1;
}
// initialize learning parameters
alphadec = 30 + ((sampling_factor - 1) / 3);
alpha = initalpha;
radius = initradius;
rad = radius >> radiusbiasshift;
if (rad <= 1) rad = 0;
for (i = 0; i < rad; i++)
radpower[i] = alpha*(((rad*rad - i*i)*radbias)/(rad*rad));
// initialize pseudo-random scan
if ((lengthcount % prime1) != 0)
step = 3*prime1;
else {
if ((lengthcount % prime2) != 0)
step = 3*prime2;
else {
if ((lengthcount % prime3) != 0)
step = 3*prime3;
else
step = 3*prime4;
}
}
i = 0; // iteration
pos = 0; // pixel position
while (i < samplepixels) {
// get next learning sample
getSample(pos, &b, &g, &r);
// find winning neuron
j = contest(b, g, r);
// alter winner
altersingle(alpha, j, b, g, r);
// alter neighbours
if (rad) alterneigh(rad, j, b, g, r);
// next sample
pos += step;
while (pos >= lengthcount) pos -= lengthcount;
i++;
if (i % delta == 0) {
// decrease learning rate and also the neighborhood
alpha -= alpha / alphadec;
radius -= radius / radiusdec;
rad = radius >> radiusbiasshift;
if (rad <= 1) rad = 0;
for (j = 0; j < rad; j++)
radpower[j] = alpha * (((rad*rad - j*j) * radbias) / (rad*rad));
}
}
}
//////////////
// Quantizer
// -----------
FIBITMAP* NNQuantizer::Quantize(FIBITMAP *dib, int ReserveSize, RGBQUAD *ReservePalette, int sampling) {
if ((!dib) || (FreeImage_GetBPP(dib) != 24)) {
return NULL;
}
// 1) Select a sampling factor in range 1..30 (input parameter 'sampling')
// 1 => slower, 30 => faster. Default value is 1
// 2) Get DIB parameters
dib_ptr = dib;
img_width = FreeImage_GetWidth(dib); // DIB width
img_height = FreeImage_GetHeight(dib); // DIB height
img_line = FreeImage_GetLine(dib); // DIB line length in bytes (should be equal to 3 x W)
// For small images, adjust the sampling factor to avoid a 'divide by zero' error later
// (see delta in learn() routine)
int adjust = (img_width * img_height) / ncycles;
if(sampling >= adjust)
sampling = 1;
// 3) Initialize the network and apply the learning algorithm
if( netsize > ReserveSize ) {
netsize -= ReserveSize;
initnet();
learn(sampling);
unbiasnet();
netsize += ReserveSize;
}
// 3.5) Overwrite the last few palette entries with the reserved ones
for (int i = 0; i < ReserveSize; i++) {
network[netsize - ReserveSize + i][FI_RGBA_BLUE] = ReservePalette[i].rgbBlue;
network[netsize - ReserveSize + i][FI_RGBA_GREEN] = ReservePalette[i].rgbGreen;
network[netsize - ReserveSize + i][FI_RGBA_RED] = ReservePalette[i].rgbRed;
network[netsize - ReserveSize + i][3] = netsize - ReserveSize + i;
}
// 4) Allocate a new 8-bit DIB
FIBITMAP *new_dib = FreeImage_Allocate(img_width, img_height, 8);
if (new_dib == NULL)
return NULL;
// 5) Write the quantized palette
RGBQUAD *new_pal = FreeImage_GetPalette(new_dib);
for (int j = 0; j < netsize; j++) {
new_pal[j].rgbBlue = (BYTE)network[j][FI_RGBA_BLUE];
new_pal[j].rgbGreen = (BYTE)network[j][FI_RGBA_GREEN];
new_pal[j].rgbRed = (BYTE)network[j][FI_RGBA_RED];
}
inxbuild();
// 6) Write output image using inxsearch(b,g,r)
for (WORD rows = 0; rows < img_height; rows++) {
BYTE *new_bits = FreeImage_GetScanLine(new_dib, rows);
BYTE *bits = FreeImage_GetScanLine(dib_ptr, rows);
for (WORD cols = 0; cols < img_width; cols++) {
new_bits[cols] = (BYTE)inxsearch(bits[FI_RGBA_BLUE], bits[FI_RGBA_GREEN], bits[FI_RGBA_RED]);
bits += 3;
}
}
return (FIBITMAP*) new_dib;
}
|