1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
// ==========================================================
// High Dynamic Range bitmap conversion routines
//
// Design and implementation by
// - Herv Drolon (drolon@infonie.fr)
//
// This file is part of FreeImage 3
//
// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
// THIS DISCLAIMER.
//
// Use at your own risk!
// ==========================================================
#include "FreeImage.h"
#include "Utilities.h"
#include "ToneMapping.h"
// ----------------------------------------------------------
// Convert RGB to and from Yxy, same as in Reinhard et al. SIGGRAPH 2002
// References :
// [1] Radiance Home Page [Online] http://radsite.lbl.gov/radiance/HOME.html
// [2] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda,
// Photographic Tone Reproduction for Digital Images, ACM Transactions on Graphics,
// 21(3):267-276, 2002 (Proceedings of SIGGRAPH 2002).
// [3] J. Tumblin and H.E. Rushmeier,
// Tone Reproduction for Realistic Images. IEEE Computer Graphics and Applications,
// 13(6):42-48, 1993.
// ----------------------------------------------------------
/**
nominal CRT primaries
*/
/*
static const float CIE_x_r = 0.640F;
static const float CIE_y_r = 0.330F;
static const float CIE_x_g = 0.290F;
static const float CIE_y_g = 0.600F;
static const float CIE_x_b = 0.150F;
static const float CIE_y_b = 0.060F;
static const float CIE_x_w = 0.3333F; // use true white
static const float CIE_y_w = 0.3333F;
*/
/**
sRGB primaries
*/
static const float CIE_x_r = 0.640F;
static const float CIE_y_r = 0.330F;
static const float CIE_x_g = 0.300F;
static const float CIE_y_g = 0.600F;
static const float CIE_x_b = 0.150F;
static const float CIE_y_b = 0.060F;
static const float CIE_x_w = 0.3127F; // Illuminant D65
static const float CIE_y_w = 0.3290F;
static const float CIE_D = ( CIE_x_r*(CIE_y_g - CIE_y_b) + CIE_x_g*(CIE_y_b - CIE_y_r) + CIE_x_b*(CIE_y_r - CIE_y_g) );
static const float CIE_C_rD = ( (1/CIE_y_w) * ( CIE_x_w*(CIE_y_g - CIE_y_b) - CIE_y_w*(CIE_x_g - CIE_x_b) + CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g) );
static const float CIE_C_gD = ( (1/CIE_y_w) * ( CIE_x_w*(CIE_y_b - CIE_y_r) - CIE_y_w*(CIE_x_b - CIE_x_r) - CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r) );
static const float CIE_C_bD = ( (1/CIE_y_w) * ( CIE_x_w*(CIE_y_r - CIE_y_g) - CIE_y_w*(CIE_x_r - CIE_x_g) + CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r) );
/**
RGB to XYZ (no white balance)
*/
static const float RGB2XYZ[3][3] = {
{ CIE_x_r*CIE_C_rD / CIE_D,
CIE_x_g*CIE_C_gD / CIE_D,
CIE_x_b*CIE_C_bD / CIE_D
},
{ CIE_y_r*CIE_C_rD / CIE_D,
CIE_y_g*CIE_C_gD / CIE_D,
CIE_y_b*CIE_C_bD / CIE_D
},
{ (1 - CIE_x_r-CIE_y_r)*CIE_C_rD / CIE_D,
(1 - CIE_x_g-CIE_y_g)*CIE_C_gD / CIE_D,
(1 - CIE_x_b-CIE_y_b)*CIE_C_bD / CIE_D
}
};
/**
XYZ to RGB (no white balance)
*/
static const float XYZ2RGB[3][3] = {
{(CIE_y_g - CIE_y_b - CIE_x_b*CIE_y_g + CIE_y_b*CIE_x_g) / CIE_C_rD,
(CIE_x_b - CIE_x_g - CIE_x_b*CIE_y_g + CIE_x_g*CIE_y_b) / CIE_C_rD,
(CIE_x_g*CIE_y_b - CIE_x_b*CIE_y_g) / CIE_C_rD
},
{(CIE_y_b - CIE_y_r - CIE_y_b*CIE_x_r + CIE_y_r*CIE_x_b) / CIE_C_gD,
(CIE_x_r - CIE_x_b - CIE_x_r*CIE_y_b + CIE_x_b*CIE_y_r) / CIE_C_gD,
(CIE_x_b*CIE_y_r - CIE_x_r*CIE_y_b) / CIE_C_gD
},
{(CIE_y_r - CIE_y_g - CIE_y_r*CIE_x_g + CIE_y_g*CIE_x_r) / CIE_C_bD,
(CIE_x_g - CIE_x_r - CIE_x_g*CIE_y_r + CIE_x_r*CIE_y_g) / CIE_C_bD,
(CIE_x_r*CIE_y_g - CIE_x_g*CIE_y_r) / CIE_C_bD
}
};
/**
This gives approximately the following matrices :
static const float RGB2XYZ[3][3] = {
{ 0.514083F, 0.323889F, 0.162028F },
{ 0.265074F, 0.670115F, 0.0648112F },
{ 0.0240976F, 0.122854F, 0.853348F }
};
static const float XYZ2RGB[3][3] = {
{ 2.56562F, -1.16699F, -0.398511F },
{ -1.02209F, 1.97826F, 0.0438210F },
{ 0.0746980F, -0.251851F, 1.17680F }
};
*/
/*
static const float RGB2XYZ[3][3] = {
{ 0.412391F, 0.357584F, 0.180481F },
{ 0.212639F, 0.715169F, 0.0721923F },
{ 0.0193308F, 0.119195F, 0.950532F }
};
static const float XYZ2RGB[3][3] = {
{ 3.24097F, -1.53738F, -0.498611F },
{ -0.969244F, 1.87597F, 0.0415551F },
{ 0.0556300F, -0.203977F, 1.05697F }
};
*/
// ----------------------------------------------------------
static const float EPSILON = 1e-06F;
static const float INF = 1e+10F;
/**
Convert in-place floating point RGB data to Yxy.<br>
On output, pixel->red == Y, pixel->green == x, pixel->blue == y
@param dib Input RGBF / Output Yxy image
@return Returns TRUE if successful, returns FALSE otherwise
*/
BOOL
ConvertInPlaceRGBFToYxy(FIBITMAP *dib) {
float result[3];
if(FreeImage_GetImageType(dib) != FIT_RGBF)
return FALSE;
unsigned width = FreeImage_GetWidth(dib);
unsigned height = FreeImage_GetHeight(dib);
unsigned pitch = FreeImage_GetPitch(dib);
BYTE *bits = (BYTE*)FreeImage_GetBits(dib);
for(unsigned y = 0; y < height; y++) {
FIRGBF *pixel = (FIRGBF*)bits;
for(unsigned x = 0; x < width; x++) {
result[0] = result[1] = result[2] = 0;
for (int i = 0; i < 3; i++) {
result[i] += RGB2XYZ[i][0] * pixel[x].red;
result[i] += RGB2XYZ[i][1] * pixel[x].green;
result[i] += RGB2XYZ[i][2] * pixel[x].blue;
}
float W = result[0] + result[1] + result[2];
float Y = result[1];
if(W > 0) {
pixel[x].red = Y; // Y
pixel[x].green = result[0] / W; // x
pixel[x].blue = result[1] / W; // y
} else {
pixel[x].red = pixel[x].green = pixel[x].blue = 0;
}
}
// next line
bits += pitch;
}
return TRUE;
}
/**
Convert in-place Yxy image to floating point RGB data.<br>
On input, pixel->red == Y, pixel->green == x, pixel->blue == y
@param dib Input Yxy / Output RGBF image
@return Returns TRUE if successful, returns FALSE otherwise
*/
BOOL
ConvertInPlaceYxyToRGBF(FIBITMAP *dib) {
float result[3];
float X, Y, Z;
if(FreeImage_GetImageType(dib) != FIT_RGBF)
return FALSE;
unsigned width = FreeImage_GetWidth(dib);
unsigned height = FreeImage_GetHeight(dib);
unsigned pitch = FreeImage_GetPitch(dib);
BYTE *bits = (BYTE*)FreeImage_GetBits(dib);
for(unsigned y = 0; y < height; y++) {
FIRGBF *pixel = (FIRGBF*)bits;
for(unsigned x = 0; x < width; x++) {
Y = pixel[x].red; // Y
result[1] = pixel[x].green; // x
result[2] = pixel[x].blue; // y
if ((Y > EPSILON) && (result[1] > EPSILON) && (result[2] > EPSILON)) {
X = (result[1] * Y) / result[2];
Z = (X / result[1]) - X - Y;
} else {
X = Z = EPSILON;
}
pixel[x].red = X;
pixel[x].green = Y;
pixel[x].blue = Z;
result[0] = result[1] = result[2] = 0;
for (int i = 0; i < 3; i++) {
result[i] += XYZ2RGB[i][0] * pixel[x].red;
result[i] += XYZ2RGB[i][1] * pixel[x].green;
result[i] += XYZ2RGB[i][2] * pixel[x].blue;
}
pixel[x].red = result[0]; // R
pixel[x].green = result[1]; // G
pixel[x].blue = result[2]; // B
}
// next line
bits += pitch;
}
return TRUE;
}
/**
Get the maximum, minimum and average luminance.<br>
On input, pixel->red == Y, pixel->green == x, pixel->blue == y
@param Yxy Source Yxy image to analyze
@param maxLum Maximum luminance
@param minLum Minimum luminance
@param worldLum Average luminance (world adaptation luminance)
@return Returns TRUE if successful, returns FALSE otherwise
*/
BOOL
LuminanceFromYxy(FIBITMAP *Yxy, float *maxLum, float *minLum, float *worldLum) {
if(FreeImage_GetImageType(Yxy) != FIT_RGBF)
return FALSE;
unsigned width = FreeImage_GetWidth(Yxy);
unsigned height = FreeImage_GetHeight(Yxy);
unsigned pitch = FreeImage_GetPitch(Yxy);
float max_lum = 0, min_lum = 0;
double sum = 0;
BYTE *bits = (BYTE*)FreeImage_GetBits(Yxy);
for(unsigned y = 0; y < height; y++) {
const FIRGBF *pixel = (FIRGBF*)bits;
for(unsigned x = 0; x < width; x++) {
const float Y = pixel[x].red;
max_lum = (max_lum < Y) ? Y : max_lum; // max Luminance in the scene
min_lum = (min_lum < Y) ? min_lum : Y; // max Luminance in the scene
sum += log(2.3e-5 + Y); // contrast constant in Tumblin paper
}
// next line
bits += pitch;
}
// maximum luminance
*maxLum = max_lum;
// minimum luminance
*minLum = min_lum;
// average log luminance
double avgLogLum = (sum / (width * height));
// world adaptation luminance
*worldLum = (float)exp(avgLogLum);
return TRUE;
}
/**
Clamp RGBF image highest values to display white,
then convert to 24-bit RGB
*/
FIBITMAP*
ClampConvertRGBFTo24(FIBITMAP *src) {
if(FreeImage_GetImageType(src) != FIT_RGBF)
return FALSE;
unsigned width = FreeImage_GetWidth(src);
unsigned height = FreeImage_GetHeight(src);
FIBITMAP *dst = FreeImage_Allocate(width, height, 24, FI_RGBA_RED_MASK, FI_RGBA_GREEN_MASK, FI_RGBA_BLUE_MASK);
if(!dst) return NULL;
unsigned src_pitch = FreeImage_GetPitch(src);
unsigned dst_pitch = FreeImage_GetPitch(dst);
BYTE *src_bits = (BYTE*)FreeImage_GetBits(src);
BYTE *dst_bits = (BYTE*)FreeImage_GetBits(dst);
for(unsigned y = 0; y < height; y++) {
const FIRGBF *src_pixel = (FIRGBF*)src_bits;
BYTE *dst_pixel = (BYTE*)dst_bits;
for(unsigned x = 0; x < width; x++) {
const float red = (src_pixel[x].red > 1) ? 1 : src_pixel[x].red;
const float green = (src_pixel[x].green > 1) ? 1 : src_pixel[x].green;
const float blue = (src_pixel[x].blue > 1) ? 1 : src_pixel[x].blue;
dst_pixel[FI_RGBA_RED] = (BYTE)(255 * red + 0.5);
dst_pixel[FI_RGBA_GREEN] = (BYTE)(255 * green + 0.5);
dst_pixel[FI_RGBA_BLUE] = (BYTE)(255 * blue + 0.5);
dst_pixel += 3;
}
src_bits += src_pitch;
dst_bits += dst_pitch;
}
return dst;
}
/**
Extract the luminance channel L from a RGBF image.
Luminance is calculated from the sRGB model (RGB2XYZ matrix)
using a D65 white point :
L = ( 0.2126 * r ) + ( 0.7152 * g ) + ( 0.0722 * b )
Reference :
A Standard Default Color Space for the Internet - sRGB.
[online] http://www.w3.org/Graphics/Color/sRGB
*/
FIBITMAP*
ConvertRGBFToY(FIBITMAP *src) {
if(FreeImage_GetImageType(src) != FIT_RGBF)
return FALSE;
unsigned width = FreeImage_GetWidth(src);
unsigned height = FreeImage_GetHeight(src);
FIBITMAP *dst = FreeImage_AllocateT(FIT_FLOAT, width, height);
if(!dst) return NULL;
unsigned src_pitch = FreeImage_GetPitch(src);
unsigned dst_pitch = FreeImage_GetPitch(dst);
BYTE *src_bits = (BYTE*)FreeImage_GetBits(src);
BYTE *dst_bits = (BYTE*)FreeImage_GetBits(dst);
for(unsigned y = 0; y < height; y++) {
const FIRGBF *src_pixel = (FIRGBF*)src_bits;
float *dst_pixel = (float*)dst_bits;
for(unsigned x = 0; x < width; x++) {
float L = 0.2126F * src_pixel[x].red + 0.7152F * src_pixel[x].green + 0.0722F * src_pixel[x].blue;
dst_pixel[x] = (L > 0) ? L : 0;
}
// next line
src_bits += src_pitch;
dst_bits += dst_pitch;
}
return dst;
}
/**
Get the maximum, minimum and average luminance
@param dib Source Y image to analyze
@param maxLum Maximum luminance
@param minLum Minimum luminance
@param worldLum Average luminance (world adaptation luminance)
@return Returns TRUE if successful, returns FALSE otherwise
@see ConvertRGBFToY
*/
BOOL
LuminanceFromY(FIBITMAP *dib, float *maxLum, float *minLum, float *worldLum) {
if(FreeImage_GetImageType(dib) != FIT_FLOAT)
return FALSE;
unsigned width = FreeImage_GetWidth(dib);
unsigned height = FreeImage_GetHeight(dib);
unsigned pitch = FreeImage_GetPitch(dib);
float max_lum = -1e20F, min_lum = 1e20F;
double sum = 0;
BYTE *bits = (BYTE*)FreeImage_GetBits(dib);
for(unsigned y = 0; y < height; y++) {
const float *pixel = (float*)bits;
for(unsigned x = 0; x < width; x++) {
const float Y = pixel[x];
max_lum = (max_lum < Y) ? Y : max_lum; // max Luminance in the scene
min_lum = ((Y > 0) && (min_lum < Y)) ? min_lum : Y; // min Luminance in the scene
sum += log(2.3e-5 + Y); // contrast constant in Tumblin paper
}
// next line
bits += pitch;
}
// maximum luminance
*maxLum = max_lum;
// minimum luminance
*minLum = min_lum;
// average log luminance
double avgLogLum = (sum / (width * height));
// world adaptation luminance
*worldLum = (float)exp(avgLogLum);
return TRUE;
}
// --------------------------------------------------------------------------
static void findMaxMinPercentile(FIBITMAP *Y, float minPrct, float *minLum, float maxPrct, float *maxLum) {
int x, y;
int width = FreeImage_GetWidth(Y);
int height = FreeImage_GetHeight(Y);
int pitch = FreeImage_GetPitch(Y);
std::vector<float> vY(width * height);
BYTE *bits = (BYTE*)FreeImage_GetBits(Y);
for(y = 0; y < height; y++) {
float *pixel = (float*)bits;
for(x = 0; x < width; x++) {
if(pixel[x] != 0) {
vY.push_back(pixel[x]);
}
}
bits += pitch;
}
std::sort(vY.begin(), vY.end());
*minLum = vY.at( int(minPrct * vY.size()) );
*maxLum = vY.at( int(maxPrct * vY.size()) );
}
/**
Clipping function<br>
Remove any extremely bright and/or extremely dark pixels
and normalize between 0 and 1.
@param Y Input/Output image
@param minPrct Minimum percentile
@param maxPrct Maximum percentile
*/
void
NormalizeY(FIBITMAP *Y, float minPrct, float maxPrct) {
int x, y;
float maxLum, minLum;
if(minPrct > maxPrct) {
// swap values
float t = minPrct; minPrct = maxPrct; maxPrct = t;
}
if(minPrct < 0) minPrct = 0;
if(maxPrct > 1) maxPrct = 1;
int width = FreeImage_GetWidth(Y);
int height = FreeImage_GetHeight(Y);
int pitch = FreeImage_GetPitch(Y);
// find max & min luminance values
if((minPrct > 0) || (maxPrct < 1)) {
maxLum = 0, minLum = 0;
findMaxMinPercentile(Y, minPrct, &minLum, maxPrct, &maxLum);
} else {
maxLum = -1e20F, minLum = 1e20F;
BYTE *bits = (BYTE*)FreeImage_GetBits(Y);
for(y = 0; y < height; y++) {
const float *pixel = (float*)bits;
for(x = 0; x < width; x++) {
const float value = pixel[x];
maxLum = (maxLum < value) ? value : maxLum; // max Luminance in the scene
minLum = (minLum < value) ? minLum : value; // min Luminance in the scene
}
// next line
bits += pitch;
}
}
if(maxLum == minLum) return;
// normalize to range 0..1
const float divider = maxLum - minLum;
BYTE *bits = (BYTE*)FreeImage_GetBits(Y);
for(y = 0; y < height; y++) {
float *pixel = (float*)bits;
for(x = 0; x < width; x++) {
pixel[x] = (pixel[x] - minLum) / divider;
if(pixel[x] <= 0) pixel[x] = EPSILON;
if(pixel[x] > 1) pixel[x] = 1;
}
// next line
bits += pitch;
}
}
|