1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
// ==========================================================
// Poisson solver based on a full multigrid algorithm
//
// Design and implementation by
// - Herv Drolon (drolon@infonie.fr)
// Reference:
// PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P.
// 1992. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge University Press.
//
// This file is part of FreeImage 3
//
// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
// THIS DISCLAIMER.
//
// Use at your own risk!
// ==========================================================
#include "FreeImage.h"
#include "Utilities.h"
#include "ToneMapping.h"
static const int NPRE = 1; // Number of relaxation sweeps before ...
static const int NPOST = 1; // ... and after the coarse-grid correction is computed
static const int NGMAX = 15; // Maximum number of grids
/**
Copy src into dst
*/
static inline void fmg_copyArray(FIBITMAP *dst, FIBITMAP *src) {
memcpy(FreeImage_GetBits(dst), FreeImage_GetBits(src), FreeImage_GetHeight(dst) * FreeImage_GetPitch(dst));
}
/**
Fills src with zeros
*/
static inline void fmg_fillArrayWithZeros(FIBITMAP *src) {
memset(FreeImage_GetBits(src), 0, FreeImage_GetHeight(src) * FreeImage_GetPitch(src));
}
/**
Half-weighting restriction. nc is the coarse-grid dimension. The fine-grid solution is input in
uf[0..2*nc-2][0..2*nc-2], the coarse-grid solution is returned in uc[0..nc-1][0..nc-1].
*/
static void fmg_restrict(FIBITMAP *UC, FIBITMAP *UF, int nc) {
int row_uc, row_uf, col_uc, col_uf;
const int uc_pitch = FreeImage_GetPitch(UC) / sizeof(float);
const int uf_pitch = FreeImage_GetPitch(UF) / sizeof(float);
float *uc_bits = (float*)FreeImage_GetBits(UC);
const float *uf_bits = (float*)FreeImage_GetBits(UF);
// interior points
{
float *uc_scan = uc_bits + uc_pitch;
for (row_uc = 1, row_uf = 2; row_uc < nc-1; row_uc++, row_uf += 2) {
const float *uf_scan = uf_bits + row_uf * uf_pitch;
for (col_uc = 1, col_uf = 2; col_uc < nc-1; col_uc++, col_uf += 2) {
// calculate
// UC(row_uc, col_uc) =
// 0.5 * UF(row_uf, col_uf) + 0.125 * [ UF(row_uf+1, col_uf) + UF(row_uf-1, col_uf) + UF(row_uf, col_uf+1) + UF(row_uf, col_uf-1) ]
float *uc_pixel = uc_scan + col_uc;
const float *uf_center = uf_scan + col_uf;
*uc_pixel = 0.5F * *uf_center + 0.125F * ( *(uf_center + uf_pitch) + *(uf_center - uf_pitch) + *(uf_center + 1) + *(uf_center - 1) );
}
uc_scan += uc_pitch;
}
}
// boundary points
const int ncc = 2*nc-1;
{
/*
calculate the following:
for (row_uc = 0, row_uf = 0; row_uc < nc; row_uc++, row_uf += 2) {
UC(row_uc, 0) = UF(row_uf, 0);
UC(row_uc, nc-1) = UF(row_uf, ncc-1);
}
*/
float *uc_scan = uc_bits;
for (row_uc = 0, row_uf = 0; row_uc < nc; row_uc++, row_uf += 2) {
const float *uf_scan = uf_bits + row_uf * uf_pitch;
uc_scan[0] = uf_scan[0];
uc_scan[nc-1] = uf_scan[ncc-1];
uc_scan += uc_pitch;
}
}
{
/*
calculate the following:
for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) {
UC(0, col_uc) = UF(0, col_uf);
UC(nc-1, col_uc) = UF(ncc-1, col_uf);
}
*/
float *uc_scan_top = uc_bits;
float *uc_scan_bottom = uc_bits + (nc-1)*uc_pitch;
const float *uf_scan_top = uf_bits + (ncc-1)*uf_pitch;
const float *uf_scan_bottom = uf_bits;
for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) {
uc_scan_top[col_uc] = uf_scan_top[col_uf];
uc_scan_bottom[col_uc] = uf_scan_bottom[col_uf];
}
}
}
/**
Solution of the model problem on the coarsest grid, where h = 1/2 .
The right-hand side is input
in rhs[0..2][0..2] and the solution is returned in u[0..2][0..2].
*/
static void fmg_solve(FIBITMAP *U, FIBITMAP *RHS) {
// fill U with zeros
fmg_fillArrayWithZeros(U);
// calculate U(1, 1) = -h*h*RHS(1, 1)/4.0 where h = 1/2
float *u_scan = (float*)FreeImage_GetScanLine(U, 1);
const float *rhs_scan = (float*)FreeImage_GetScanLine(RHS, 1);
u_scan[1] = -rhs_scan[1] / 16;
}
/**
Coarse-to-fine prolongation by bilinear interpolation. nf is the fine-grid dimension. The coarsegrid
solution is input as uc[0..nc-1][0..nc-1], where nc = nf/2 + 1. The fine-grid solution is
returned in uf[0..nf-1][0..nf-1].
*/
static void fmg_prolongate(FIBITMAP *UF, FIBITMAP *UC, int nf) {
int row_uc, row_uf, col_uc, col_uf;
const int uf_pitch = FreeImage_GetPitch(UF) / sizeof(float);
const int uc_pitch = FreeImage_GetPitch(UC) / sizeof(float);
float *uf_bits = (float*)FreeImage_GetBits(UF);
const float *uc_bits = (float*)FreeImage_GetBits(UC);
// do elements that are copies
{
const int nc = nf/2 + 1;
float *uf_scan = uf_bits;
const float *uc_scan = uc_bits;
for (row_uc = 0; row_uc < nc; row_uc++) {
for (col_uc = 0, col_uf = 0; col_uc < nc; col_uc++, col_uf += 2) {
// calculate UF(2*row_uc, col_uf) = UC(row_uc, col_uc);
uf_scan[col_uf] = uc_scan[col_uc];
}
uc_scan += uc_pitch;
uf_scan += 2 * uf_pitch;
}
}
// do odd-numbered columns, interpolating vertically
{
for(row_uf = 1; row_uf < nf-1; row_uf += 2) {
float *uf_scan = uf_bits + row_uf * uf_pitch;
for (col_uf = 0; col_uf < nf; col_uf += 2) {
// calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf+1, col_uf) + UF(row_uf-1, col_uf) )
uf_scan[col_uf] = 0.5F * ( *(uf_scan + uf_pitch + col_uf) + *(uf_scan - uf_pitch + col_uf) );
}
}
}
// do even-numbered columns, interpolating horizontally
{
float *uf_scan = uf_bits;
for(row_uf = 0; row_uf < nf; row_uf++) {
for (col_uf = 1; col_uf < nf-1; col_uf += 2) {
// calculate UF(row_uf, col_uf) = 0.5 * ( UF(row_uf, col_uf+1) + UF(row_uf, col_uf-1) )
uf_scan[col_uf] = 0.5F * ( uf_scan[col_uf + 1] + uf_scan[col_uf - 1] );
}
uf_scan += uf_pitch;
}
}
}
/**
Red-black Gauss-Seidel relaxation for model problem. Updates the current value of the solution
u[0..n-1][0..n-1], using the right-hand side function rhs[0..n-1][0..n-1].
*/
static void fmg_relaxation(FIBITMAP *U, FIBITMAP *RHS, int n) {
int row, col, ipass, isw, jsw;
const float h = 1.0F / (n - 1);
const float h2 = h*h;
const int u_pitch = FreeImage_GetPitch(U) / sizeof(float);
const int rhs_pitch = FreeImage_GetPitch(RHS) / sizeof(float);
float *u_bits = (float*)FreeImage_GetBits(U);
const float *rhs_bits = (float*)FreeImage_GetBits(RHS);
for (ipass = 0, jsw = 1; ipass < 2; ipass++, jsw = 3-jsw) { // Red and black sweeps
float *u_scan = u_bits + u_pitch;
const float *rhs_scan = rhs_bits + rhs_pitch;
for (row = 1, isw = jsw; row < n-1; row++, isw = 3-isw) {
for (col = isw; col < n-1; col += 2) {
// Gauss-Seidel formula
// calculate U(row, col) =
// 0.25 * [ U(row+1, col) + U(row-1, col) + U(row, col+1) + U(row, col-1) - h2 * RHS(row, col) ]
float *u_center = u_scan + col;
const float *rhs_center = rhs_scan + col;
*u_center = *(u_center + u_pitch) + *(u_center - u_pitch) + *(u_center + 1) + *(u_center - 1);
*u_center -= h2 * *rhs_center;
*u_center *= 0.25F;
}
u_scan += u_pitch;
rhs_scan += rhs_pitch;
}
}
}
/**
Returns minus the residual for the model problem. Input quantities are u[0..n-1][0..n-1] and
rhs[0..n-1][0..n-1], while res[0..n-1][0..n-1] is returned.
*/
static void fmg_residual(FIBITMAP *RES, FIBITMAP *U, FIBITMAP *RHS, int n) {
int row, col;
const float h = 1.0F / (n-1);
const float h2i = 1.0F / (h*h);
const int res_pitch = FreeImage_GetPitch(RES) / sizeof(float);
const int u_pitch = FreeImage_GetPitch(U) / sizeof(float);
const int rhs_pitch = FreeImage_GetPitch(RHS) / sizeof(float);
float *res_bits = (float*)FreeImage_GetBits(RES);
const float *u_bits = (float*)FreeImage_GetBits(U);
const float *rhs_bits = (float*)FreeImage_GetBits(RHS);
// interior points
{
float *res_scan = res_bits + res_pitch;
const float *u_scan = u_bits + u_pitch;
const float *rhs_scan = rhs_bits + rhs_pitch;
for (row = 1; row < n-1; row++) {
for (col = 1; col < n-1; col++) {
// calculate RES(row, col) =
// -h2i * [ U(row+1, col) + U(row-1, col) + U(row, col+1) + U(row, col-1) - 4 * U(row, col) ] + RHS(row, col);
float *res_center = res_scan + col;
const float *u_center = u_scan + col;
const float *rhs_center = rhs_scan + col;
*res_center = *(u_center + u_pitch) + *(u_center - u_pitch) + *(u_center + 1) + *(u_center - 1) - 4 * *u_center;
*res_center *= -h2i;
*res_center += *rhs_center;
}
res_scan += res_pitch;
u_scan += u_pitch;
rhs_scan += rhs_pitch;
}
}
// boundary points
{
memset(FreeImage_GetScanLine(RES, 0), 0, FreeImage_GetPitch(RES));
memset(FreeImage_GetScanLine(RES, n-1), 0, FreeImage_GetPitch(RES));
float *left = res_bits;
float *right = res_bits + (n-1);
for(int k = 0; k < n; k++) {
*left = 0;
*right = 0;
left += res_pitch;
right += res_pitch;
}
}
}
/**
Does coarse-to-fine interpolation and adds result to uf. nf is the fine-grid dimension. The
coarse-grid solution is input as uc[0..nc-1][0..nc-1], where nc = nf/2+1. The fine-grid solution
is returned in uf[0..nf-1][0..nf-1]. res[0..nf-1][0..nf-1] is used for temporary storage.
*/
static void fmg_addint(FIBITMAP *UF, FIBITMAP *UC, FIBITMAP *RES, int nf) {
fmg_prolongate(RES, UC, nf);
const int uf_pitch = FreeImage_GetPitch(UF) / sizeof(float);
const int res_pitch = FreeImage_GetPitch(RES) / sizeof(float);
float *uf_bits = (float*)FreeImage_GetBits(UF);
const float *res_bits = (float*)FreeImage_GetBits(RES);
for(int row = 0; row < nf; row++) {
for(int col = 0; col < nf; col++) {
// calculate UF(row, col) = UF(row, col) + RES(row, col);
uf_bits[col] += res_bits[col];
}
uf_bits += uf_pitch;
res_bits += res_pitch;
}
}
/**
Full Multigrid Algorithm for solution of linear elliptic equation, here the model problem (19.0.6).
On input u[0..n-1][0..n-1] contains the right-hand side , while on output it returns the solution.
The dimension n must be of the form 2^j + 1 for some integer j. (j is actually the number of
grid levels used in the solution, called ng below.) ncycle is the number of V-cycles to be
used at each level.
*/
static BOOL fmg_mglin(FIBITMAP *U, int n, int ncycle) {
int j, jcycle, jj, jpost, jpre, nf, ngrid;
FIBITMAP **IRHO = NULL;
FIBITMAP **IU = NULL;
FIBITMAP **IRHS = NULL;
FIBITMAP **IRES = NULL;
int ng = 0; // number of allocated grids
// --------------------------------------------------------------------------
#define _CREATE_ARRAY_GRID_(array, array_size) \
array = (FIBITMAP**)malloc(array_size * sizeof(FIBITMAP*));\
if(!array) throw(1);\
memset(array, 0, array_size * sizeof(FIBITMAP*))
#define _FREE_ARRAY_GRID_(array, array_size) \
if(NULL != array) {\
for(int k = 0; k < array_size; k++) {\
if(NULL != array[k]) {\
FreeImage_Unload(array[k]); array[k] = NULL;\
}\
}\
free(array);\
}
// --------------------------------------------------------------------------
try {
int nn = n;
// check grid size and grid levels
while (nn >>= 1) ng++;
if (n != 1 + (1L << ng)) {
FreeImage_OutputMessageProc(FIF_UNKNOWN, "Multigrid algorithm: n = %d, while n-1 must be a power of 2.", n);
throw(1);
}
if (ng > NGMAX) {
FreeImage_OutputMessageProc(FIF_UNKNOWN, "Multigrid algorithm: ng = %d while NGMAX = %d, increase NGMAX.", ng, NGMAX);
throw(1);
}
// allocate grid arrays
{
_CREATE_ARRAY_GRID_(IRHO, ng);
_CREATE_ARRAY_GRID_(IU, ng);
_CREATE_ARRAY_GRID_(IRHS, ng);
_CREATE_ARRAY_GRID_(IRES, ng);
}
nn = n/2 + 1;
ngrid = ng - 2;
// allocate storage for r.h.s. on grid (ng - 2) ...
IRHO[ngrid] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IRHO[ngrid]) throw(1);
// ... and fill it by restricting from the fine grid
fmg_restrict(IRHO[ngrid], U, nn);
// similarly allocate storage and fill r.h.s. on all coarse grids.
while (nn > 3) {
nn = nn/2 + 1;
ngrid--;
IRHO[ngrid] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IRHO[ngrid]) throw(1);
fmg_restrict(IRHO[ngrid], IRHO[ngrid+1], nn);
}
nn = 3;
IU[0] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IU[0]) throw(1);
IRHS[0] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IRHS[0]) throw(1);
// initial solution on coarsest grid
fmg_solve(IU[0], IRHO[0]);
// irho[0] no longer needed ...
FreeImage_Unload(IRHO[0]); IRHO[0] = NULL;
ngrid = ng;
// nested iteration loop
for (j = 1; j < ngrid; j++) {
nn = 2*nn - 1;
IU[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IU[j]) throw(1);
IRHS[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IRHS[j]) throw(1);
IRES[j] = FreeImage_AllocateT(FIT_FLOAT, nn, nn);
if(!IRES[j]) throw(1);
fmg_prolongate(IU[j], IU[j-1], nn);
// interpolate from coarse grid to next finer grid
// set up r.h.s.
fmg_copyArray(IRHS[j], j != (ngrid - 1) ? IRHO[j] : U);
// V-cycle loop
for (jcycle = 0; jcycle < ncycle; jcycle++) {
nf = nn;
// downward stoke of the V
for (jj = j; jj >= 1; jj--) {
// pre-smoothing
for (jpre = 0; jpre < NPRE; jpre++) {
fmg_relaxation(IU[jj], IRHS[jj], nf);
}
fmg_residual(IRES[jj], IU[jj], IRHS[jj], nf);
nf = nf/2 + 1;
// restriction of the residual is the next r.h.s.
fmg_restrict(IRHS[jj-1], IRES[jj], nf);
// zero for initial guess in next relaxation
fmg_fillArrayWithZeros(IU[jj-1]);
}
// bottom of V: solve on coarsest grid
fmg_solve(IU[0], IRHS[0]);
nf = 3;
// upward stroke of V.
for (jj = 1; jj <= j; jj++) {
nf = 2*nf - 1;
// use res for temporary storage inside addint
fmg_addint(IU[jj], IU[jj-1], IRES[jj], nf);
// post-smoothing
for (jpost = 0; jpost < NPOST; jpost++) {
fmg_relaxation(IU[jj], IRHS[jj], nf);
}
}
}
}
// return solution in U
fmg_copyArray(U, IU[ngrid-1]);
// delete allocated arrays
_FREE_ARRAY_GRID_(IRES, ng);
_FREE_ARRAY_GRID_(IRHS, ng);
_FREE_ARRAY_GRID_(IU, ng);
_FREE_ARRAY_GRID_(IRHO, ng);
return TRUE;
} catch(int) {
// delete allocated arrays
_FREE_ARRAY_GRID_(IRES, ng);
_FREE_ARRAY_GRID_(IRHS, ng);
_FREE_ARRAY_GRID_(IU, ng);
_FREE_ARRAY_GRID_(IRHO, ng);
return FALSE;
}
}
// --------------------------------------------------------------------------
/**
Poisson solver based on a multigrig algorithm.
This routine solves a Poisson equation, remap result pixels to [0..1] and returns the solution.
NB: The input image is first stored inside a square image whose size is (2^j + 1)x(2^j + 1) for some integer j,
where j is such that 2^j is the nearest larger dimension corresponding to MAX(image width, image height).
@param Laplacian Laplacian image
@param ncycle Number of cycles in the multigrid algorithm (usually 2 or 3)
@return Returns the solved PDE equations if successful, returns NULL otherwise
*/
FIBITMAP* DLL_CALLCONV
FreeImage_MultigridPoissonSolver(FIBITMAP *Laplacian, int ncycle) {
if(!Laplacian) return NULL;
int width = FreeImage_GetWidth(Laplacian);
int height = FreeImage_GetHeight(Laplacian);
// get nearest larger dimension length that is acceptable by the algorithm
int n = MAX(width, height);
int size = 0;
while((n >>= 1) > 0) size++;
// size must be of the form 2^j + 1 for some integer j
size = 1 + (1 << (size + 1));
// allocate a temporary square image I
FIBITMAP *I = FreeImage_AllocateT(FIT_FLOAT, size, size);
if(!I) return NULL;
// copy Laplacian into I and shift pixels to create a boundary
FreeImage_Paste(I, Laplacian, 1, 1, 255);
// solve the PDE equation
fmg_mglin(I, size, ncycle);
// shift pixels back
FIBITMAP *U = FreeImage_Copy(I, 1, 1, width + 1, height + 1);
FreeImage_Unload(I);
// remap pixels to [0..1]
NormalizeY(U, 0, 1);
// return the integrated image
return U;
}
|