1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
// ==========================================================
// Helper class for rational numbers
//
// Design and implementation by
// - Herv Drolon <drolon@infonie.fr>
//
// This file is part of FreeImage 3
//
// COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTY
// OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES
// THAT THE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE
// OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED
// CODE IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT, YOU (NOT
// THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE COST OF ANY NECESSARY
// SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL
// PART OF THIS LICENSE. NO USE OF ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER
// THIS DISCLAIMER.
//
// Use at your own risk!
// ==========================================================
#include "FreeImage.h"
#include "Utilities.h"
#include "FIRational.h"
/// Initialize and normalize a rational number
void FIRational::initialize(long n, long d) {
if(d) {
_numerator = n;
_denominator = d;
// normalize rational
normalize();
} else {
_numerator = 0;
_denominator = 0;
}
}
/// Default constructor
FIRational::FIRational() {
_numerator = 0;
_denominator = 0;
}
/// Constructor with longs
FIRational::FIRational(long n, long d) {
initialize(n, d);
}
/// Constructor with FITAG
FIRational::FIRational(const FITAG *tag) {
switch(FreeImage_GetTagType((FITAG*)tag)) {
case FIDT_RATIONAL: // 64-bit unsigned fraction
{
DWORD *pvalue = (DWORD*)FreeImage_GetTagValue((FITAG*)tag);
initialize((long)pvalue[0], (long)pvalue[1]);
break;
}
case FIDT_SRATIONAL: // 64-bit signed fraction
{
LONG *pvalue = (LONG*)FreeImage_GetTagValue((FITAG*)tag);
initialize((long)pvalue[0], (long)pvalue[1]);
break;
}
}
}
FIRational::FIRational(float value) {
if (value == (float)((long)value)) {
_numerator = (long)value;
_denominator = 1L;
} else {
int k, count;
long n[4];
float x = fabs(value);
int sign = (value > 0) ? 1 : -1;
// make a continued-fraction expansion of x
count = -1;
for(k = 0; k < 4; k++) {
n[k] = (long)floor(x);
count++;
x -= (float)n[k];
if(x == 0) break;
x = 1 / x;
}
// compute the rational
_numerator = 1;
_denominator = n[count];
for(int i = count - 1; i >= 0; i--) {
if(n[i] == 0) break;
long _num = (n[i] * _numerator + _denominator);
long _den = _numerator;
_numerator = _num;
_denominator = _den;
}
_numerator *= sign;
}
}
/// Copy constructor
FIRational::FIRational (const FIRational& r) {
initialize(r._numerator, r._denominator);
}
/// Destructor
FIRational::~FIRational() {
}
/// Assignement operator
FIRational& FIRational::operator=(FIRational& r) {
if(this != &r) {
initialize(r._numerator, r._denominator);
}
return *this;
}
/// Get the numerator
long FIRational::getNumerator() {
return _numerator;
}
/// Get the denominator
long FIRational::getDenominator() {
return _denominator;
}
/// Calculate GCD
long FIRational::gcd(long a, long b) {
long temp;
while (b) { // While non-zero value
temp = b; // Save current value
b = a % b; // Assign remainder of division
a = temp; // Copy old value
}
return a; // Return GCD of numbers
}
/// Normalize numerator / denominator
void FIRational::normalize() {
if (_numerator != 1 && _denominator != 1) { // Is there something to do?
// Calculate GCD
long common = gcd(_numerator, _denominator);
if (common != 1) { // If GCD is not one
_numerator /= common; // Calculate new numerator
_denominator /= common; // Calculate new denominator
}
}
if(_denominator < 0) { // If sign is in denominator
_numerator *= -1; // Multiply num and den by -1
_denominator *= -1; // To keep sign in numerator
}
}
/// Checks if this rational number is an Integer, either positive or negative
BOOL FIRational::isInteger() {
if(_denominator == 1 || (_denominator != 0 && (_numerator % _denominator == 0)) || (_denominator == 0 && _numerator == 0))
return TRUE;
return FALSE;
}
/// Convert as "numerator/denominator"
std::string FIRational::toString() {
std::ostringstream s;
if(isInteger()) {
s << intValue();
} else {
s << _numerator << "/" << _denominator;
}
return s.str();
}
|