1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
|
/* -*- Mode: C++; c-basic-offset: 4; indent-tabs-mode: t; tab-width: 4 -*- */
/* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is [Open Source Virtual Machine].
*
* The Initial Developer of the Original Code is
* Adobe System Incorporated.
* Portions created by the Initial Developer are Copyright (C) 2004-2007
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
* Adobe AS3 Team
*
* Alternatively, the contents of this file may be used under the terms of
* either the GNU General Public License Version 2 or later (the "GPL"), or
* the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
* in which case the provisions of the GPL or the LGPL are applicable instead
* of those above. If you wish to allow use of your version of this file only
* under the terms of either the GPL or the LGPL, and not to allow others to
* use your version of this file under the terms of the MPL, indicate your
* decision by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL or the LGPL. If you do not delete
* the provisions above, a recipient may use your version of this file under
* the terms of any one of the MPL, the GPL or the LGPL.
*
* ***** END LICENSE BLOCK ***** */
#ifndef __nanojit_LIR__
#define __nanojit_LIR__
/**
* Fundamentally, the arguments to the various operands can be grouped along
* two dimensions. One dimension is size: can the arguments fit into a 32-bit
* register, or not? The other dimension is whether the argument is an integer
* (including pointers) or a floating-point value. In all comments below,
* "integer" means integer of any size, including 64-bit, unless otherwise
* specified. All floating-point values are always 64-bit. Below, "quad" is
* used for a 64-bit value that might be either integer or floating-point.
*/
namespace nanojit
{
#define is_trace_skip_tramp(op) ((op) <= LIR_tramp)
enum LOpcode
#if defined(_MSC_VER) && _MSC_VER >= 1400
: unsigned
#endif
{
// flags; upper bits reserved
LIR64 = 0x40, // result is double or quad
#define OPDEF(op, number, args) \
LIR_##op = (number),
#define OPDEF64(op, number, args) \
LIR_##op = ((number) | LIR64),
#include "LIRopcode.tbl"
LIR_sentinel
#undef OPDEF
#undef OPDEF64
};
#if defined NANOJIT_64BIT
#define LIR_ldp LIR_ldq
#define LIR_stp LIR_stq
#define LIR_piadd LIR_qiadd
#define LIR_piand LIR_qiand
#define LIR_pilsh LIR_qilsh
#define LIR_pcmov LIR_qcmov
#define LIR_pior LIR_qior
#else
#define LIR_ldp LIR_ld
#define LIR_stp LIR_st
#define LIR_piadd LIR_add
#define LIR_piand LIR_and
#define LIR_pilsh LIR_lsh
#define LIR_pcmov LIR_cmov
#define LIR_pior LIR_or
#endif
inline uint32_t argwords(uint32_t argc) {
return (argc+3)>>2;
}
struct GuardRecord;
struct SideExit;
struct Page;
enum AbiKind {
ABI_FASTCALL,
ABI_THISCALL,
ABI_STDCALL,
ABI_CDECL
};
enum ArgSize {
ARGSIZE_NONE = 0,
ARGSIZE_F = 1,
ARGSIZE_LO = 2,
ARGSIZE_Q = 3,
_ARGSIZE_MASK_INT = 2,
_ARGSIZE_MASK_ANY = 3
};
struct CallInfo
{
uintptr_t _address;
uint32_t _argtypes:18; // 9 2-bit fields indicating arg type, by ARGSIZE above (including ret type): a1 a2 a3 a4 a5 ret
uint8_t _cse:1; // true if no side effects
uint8_t _fold:1; // true if no side effects
AbiKind _abi:3;
verbose_only ( const char* _name; )
uint32_t FASTCALL _count_args(uint32_t mask) const;
uint32_t get_sizes(ArgSize*) const;
inline bool isInterface() const {
return _address == 2 || _address == 3; /* hack! */
}
inline bool isIndirect() const {
return _address < 256;
}
inline uint32_t FASTCALL count_args() const {
return _count_args(_ARGSIZE_MASK_ANY) + isIndirect();
}
inline uint32_t FASTCALL count_iargs() const {
return _count_args(_ARGSIZE_MASK_INT);
}
// fargs = args - iargs
};
/*
* Record for extra data used to compile switches as jump tables.
*/
struct SwitchInfo
{
NIns** table; // Jump table; a jump address is NIns*
uint32_t count; // Number of table entries
// Index value at last execution of the switch. The index value
// is the offset into the jump table. Thus it is computed as
// (switch expression) - (lowest case value).
uint32_t index;
};
inline bool isGuard(LOpcode op) {
return op == LIR_x || op == LIR_xf || op == LIR_xt || op == LIR_loop || op == LIR_xbarrier || op == LIR_xtbl;
}
inline bool isCall(LOpcode op) {
op = LOpcode(op & ~LIR64);
return op == LIR_call || op == LIR_calli;
}
inline bool isStore(LOpcode op) {
op = LOpcode(op & ~LIR64);
return op == LIR_st || op == LIR_sti;
}
inline bool isConst(LOpcode op) {
NanoStaticAssert((LIR_short & 1) == 0);
NanoStaticAssert(LIR_int == LIR_short + 1);
return (op & ~1) == LIR_short;
}
inline bool isLoad(LOpcode op) {
return op == LIR_ldq || op == LIR_ld || op == LIR_ldc || op == LIR_ldqc || op == LIR_ldcs;
}
// Sun Studio requires explicitly declaring signed int bit-field
#if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
#define _sign_int signed int
#else
#define _sign_int int32_t
#endif
// Low-level Instruction 4B
// had to lay it our as a union with duplicate code fields since msvc couldn't figure out how to compact it otherwise.
class LIns
{
friend class LirBufWriter;
// 3-operand form (backwards reach only)
struct u_type
{
LOpcode code:8;
uint32_t oprnd_3:8; // only used for store, since this location gets clobbered during generation
uint32_t oprnd_1:8; // 256 ins window and since they only point backwards this is sufficient.
uint32_t oprnd_2:8;
};
struct sti_type
{
LOpcode code:8;
_sign_int disp:8;
uint32_t oprnd_1:8; // 256 ins window and since they only point backwards this is sufficient.
uint32_t oprnd_2:8;
};
// imm8 form
struct c_type
{
LOpcode code:8;
uint32_t resv:8; // cobberred during assembly
uint32_t imm8a:8;
uint32_t imm8b:8;
};
// imm24 form for short tramp & skip
struct t_type
{
LOpcode code:8;
_sign_int imm24:24;
};
// imm16 form
struct i_type
{
LOpcode code:8;
uint32_t resv:8; // cobberred during assembly
_sign_int imm16:16;
};
// overlay used during code generation ( note that last byte is reserved for allocation )
struct g_type
{
LOpcode code:8;
uint32_t resv:8; // cobberred during assembly
uint32_t unused:16;
};
#undef _sign_
/**
* Various forms of the instruction.
*
* In general the oprnd_x entries contain an uint value 0-255 that identifies a previous
* instruction, where 0 means the previous instruction and 255 means the instruction two
* hundred and fifty five prior to this one.
*
* For pointing to instructions further than this range LIR_tramp is used.
*/
union
{
u_type u;
c_type c;
i_type i;
t_type t;
g_type g;
sti_type sti;
};
enum {
callInfoWords = sizeof(LIns*)/sizeof(u_type)
};
uint32_t reference(LIns*) const;
LIns* deref(int32_t off) const;
public:
LIns* FASTCALL oprnd1() const;
LIns* FASTCALL oprnd2() const;
LIns* FASTCALL oprnd3() const;
inline LOpcode opcode() const { return u.code; }
inline uint8_t imm8() const { return c.imm8a; }
inline uint8_t imm8b() const { return c.imm8b; }
inline int16_t imm16() const { return i.imm16; }
inline int32_t imm24() const { return t.imm24; }
LIns* ref() const;
int32_t imm32() const;
inline uint8_t resv() const { return g.resv; }
void* payload() const;
inline Page* page() { return (Page*) alignTo(this,NJ_PAGE_SIZE); }
inline int32_t size() const {
NanoAssert(isop(LIR_alloc));
return i.imm16<<2;
}
inline void setSize(int32_t bytes) {
NanoAssert(isop(LIR_alloc) && (bytes&3)==0 && isU16(bytes>>2));
i.imm16 = bytes>>2;
}
LIns* arg(uint32_t i);
inline int32_t immdisp()const
{
return (u.code&~LIR64) == LIR_sti ? sti.disp : oprnd3()->constval();
}
inline static bool sameop(LIns* a, LIns* b)
{
// hacky but more efficient than opcode() == opcode() due to bit masking of 7-bit field
union {
uint32_t x;
u_type u;
} tmp;
tmp.x = *(uint32_t*)a ^ *(uint32_t*)b;
return tmp.u.code == 0;
}
inline int32_t constval() const
{
NanoAssert(isconst());
return isop(LIR_short) ? imm16() : imm32();
}
uint64_t constvalq() const;
inline void* constvalp() const
{
#ifdef AVMPLUS_64BIT
return (void*)constvalq();
#else
return (void*)constval();
#endif
}
double constvalf() const;
bool isCse(const CallInfo *functions) const;
bool isop(LOpcode o) const { return u.code == o; }
bool isQuad() const;
bool isCond() const;
bool isCmp() const;
bool isCall() const { return nanojit::isCall(u.code); }
bool isStore() const { return nanojit::isStore(u.code); }
bool isLoad() const { return nanojit::isLoad(u.code); }
bool isGuard() const { return nanojit::isGuard(u.code); }
// True if the instruction is a 32-bit or smaller constant integer.
bool isconst() const { return nanojit::isConst(u.code); }
// True if the instruction is a 32-bit or smaller constant integer and
// has the value val when treated as a 32-bit signed integer.
bool isconstval(int32_t val) const;
// True if the instruction is a constant quad value.
bool isconstq() const;
// True if the instruction is a constant pointer value.
bool isconstp() const;
bool isTramp() {
return isop(LIR_neartramp) || isop(LIR_tramp);
}
bool isBranch() const {
return isop(LIR_jt) || isop(LIR_jf) || isop(LIR_j);
}
// Set the imm16 member. Should only be used on instructions that use
// that. If you're not sure, you shouldn't be calling it.
void setimm16(int32_t i);
void setimm24(int32_t x);
// Set the resv member. Should only be used on instructions that use
// that. If you're not sure, you shouldn't be calling it.
void setresv(uint32_t resv);
// Set the opcode
void initOpcode(LOpcode);
// operand-setting methods
void setOprnd1(LIns*);
void setOprnd2(LIns*);
void setOprnd3(LIns*);
void setDisp(int8_t d);
void target(LIns* t);
LIns **targetAddr();
LIns* getTarget();
GuardRecord *record();
inline uint32_t argc() const {
NanoAssert(isCall());
return c.imm8b;
}
size_t callInsWords() const;
const CallInfo *callInfo() const;
};
typedef LIns* LInsp;
typedef struct { LIns* v; LIns i; } LirFarIns;
typedef struct { int32_t v; LIns i; } LirImm32Ins;
typedef struct { int32_t v[2]; LIns i; } LirImm64Ins;
typedef struct { const CallInfo* ci; LIns i; } LirCallIns;
static const uint32_t LIR_FAR_SLOTS = sizeof(LirFarIns)/sizeof(LIns);
static const uint32_t LIR_CALL_SLOTS = sizeof(LirCallIns)/sizeof(LIns);
static const uint32_t LIR_IMM32_SLOTS = sizeof(LirImm32Ins)/sizeof(LIns);
static const uint32_t LIR_IMM64_SLOTS = sizeof(LirImm64Ins)/sizeof(LIns);
// Current belief is that this only needs to reserve LIR_FAR_SLOTS + 1 past the header, but
// reserve 3 more words just in case, as we've got the pointer arithmetic wrong several times
// here already.
#define MAX_SKIP_BYTES (NJ_PAGE_SIZE \
- sizeof(PageHeader) \
- (LIR_FAR_SLOTS + 4) * sizeof(LIns))
bool FASTCALL isCse(LOpcode v);
bool FASTCALL isCmp(LOpcode v);
bool FASTCALL isCond(LOpcode v);
inline bool isRet(LOpcode c) {
return (c & ~LIR64) == LIR_ret;
}
bool FASTCALL isFloat(LOpcode v);
LIns* FASTCALL callArgN(LInsp i, uint32_t n);
extern const uint8_t operandCount[];
class Fragmento; // @todo remove this ; needed for minbuild for some reason?!? Should not be compiling this code at all
class LirFilter;
// make it a GCObject so we can explicitly delete it early
class LirWriter : public avmplus::GCObject
{
public:
LirWriter *out;
const CallInfo *_functions;
virtual ~LirWriter() {}
LirWriter(LirWriter* out)
: out(out), _functions(out?out->_functions : 0) {}
virtual LInsp ins0(LOpcode v) {
return out->ins0(v);
}
virtual LInsp ins1(LOpcode v, LIns* a) {
return out->ins1(v, a);
}
virtual LInsp ins2(LOpcode v, LIns* a, LIns* b) {
return out->ins2(v, a, b);
}
virtual LInsp insGuard(LOpcode v, LIns *c, LIns *x) {
return out->insGuard(v, c, x);
}
virtual LInsp insBranch(LOpcode v, LInsp condition, LInsp to) {
return out->insBranch(v, condition, to);
}
// arg: 0=first, 1=second, ...
// kind: 0=arg 1=saved-reg
virtual LInsp insParam(int32_t arg, int32_t kind) {
return out->insParam(arg, kind);
}
virtual LInsp insImm(int32_t imm) {
return out->insImm(imm);
}
virtual LInsp insImmq(uint64_t imm) {
return out->insImmq(imm);
}
virtual LInsp insLoad(LOpcode op, LIns* base, LIns* d) {
return out->insLoad(op, base, d);
}
virtual LInsp insStore(LIns* value, LIns* base, LIns* disp) {
return out->insStore(value, base, disp);
}
virtual LInsp insStorei(LIns* value, LIns* base, int32_t d) {
return isS8(d) ? out->insStorei(value, base, d)
: out->insStore(value, base, insImm(d));
}
virtual LInsp insCall(const CallInfo *call, LInsp args[]) {
return out->insCall(call, args);
}
virtual LInsp insAlloc(int32_t size) {
return out->insAlloc(size);
}
virtual LInsp skip(size_t size) {
return out->skip(size);
}
// convenience
LIns* insLoadi(LIns *base, int disp);
LIns* insLoad(LOpcode op, LIns *base, int disp);
LIns* store(LIns* value, LIns* base, int32_t d);
// Inserts a conditional to execute and branches to execute if
// the condition is true and false respectively.
LIns* ins_choose(LIns* cond, LIns* iftrue, LIns* iffalse);
// Inserts an integer comparison to 0
LIns* ins_eq0(LIns* oprnd1);
// Inserts a binary operation where the second operand is an
// integer immediate.
LIns* ins2i(LOpcode op, LIns *oprnd1, int32_t);
LIns* qjoin(LInsp lo, LInsp hi);
LIns* insImmPtr(const void *ptr);
LIns* insImmf(double f);
};
#ifdef NJ_VERBOSE
extern const char* lirNames[];
/**
* map address ranges to meaningful names.
*/
class LabelMap MMGC_SUBCLASS_DECL
{
LabelMap* parent;
class Entry MMGC_SUBCLASS_DECL
{
public:
Entry(int) : name(0), size(0), align(0) {}
Entry(avmplus::String *n, size_t s, size_t a) : name(n),size(s),align(a) {}
~Entry();
DRCWB(avmplus::String*) name;
size_t size:29, align:3;
};
avmplus::SortedMap<const void*, Entry*, avmplus::LIST_GCObjects> names;
bool addrs, pad[3];
char buf[1000], *end;
void formatAddr(const void *p, char *buf);
public:
avmplus::AvmCore *core;
LabelMap(avmplus::AvmCore *, LabelMap* parent);
~LabelMap();
void add(const void *p, size_t size, size_t align, const char *name);
void add(const void *p, size_t size, size_t align, avmplus::String*);
const char *dup(const char *);
const char *format(const void *p);
void promoteAll(const void *newbase);
void clear();
};
class LirNameMap MMGC_SUBCLASS_DECL
{
template <class Key>
class CountMap: public avmplus::SortedMap<Key, int, avmplus::LIST_NonGCObjects> {
public:
CountMap(avmplus::GC*gc) : avmplus::SortedMap<Key, int, avmplus::LIST_NonGCObjects>(gc) {}
int add(Key k) {
int c = 1;
if (containsKey(k)) {
c = 1+get(k);
}
put(k,c);
return c;
}
};
CountMap<int> lircounts;
CountMap<const CallInfo *> funccounts;
class Entry MMGC_SUBCLASS_DECL
{
public:
Entry(int) : name(0) {}
Entry(avmplus::String *n) : name(n) {}
~Entry();
DRCWB(avmplus::String*) name;
};
avmplus::SortedMap<LInsp, Entry*, avmplus::LIST_GCObjects> names;
const CallInfo *_functions;
LabelMap *labels;
void formatImm(int32_t c, char *buf);
public:
LirNameMap(avmplus::GC *gc, const CallInfo *_functions, LabelMap *r)
: lircounts(gc),
funccounts(gc),
names(gc),
_functions(_functions),
labels(r)
{}
~LirNameMap();
void addName(LInsp i, const char *s);
bool addName(LInsp i, avmplus::String *s);
void copyName(LInsp i, const char *s, int suffix);
const char *formatRef(LIns *ref);
const char *formatIns(LInsp i);
void formatGuard(LInsp i, char *buf);
};
class VerboseWriter : public LirWriter
{
InsList code;
DWB(LirNameMap*) names;
public:
VerboseWriter(avmplus::GC *gc, LirWriter *out, LirNameMap* names)
: LirWriter(out), code(gc), names(names)
{}
LInsp add(LInsp i) {
if (i)
code.add(i);
return i;
}
LInsp add_flush(LInsp i) {
if ((i = add(i)) != 0)
flush();
return i;
}
void flush()
{
int n = code.size();
if (n) {
for (int i=0; i < n; i++)
printf(" %s\n",names->formatIns(code[i]));
code.clear();
if (n > 1)
printf("\n");
}
}
LIns* insGuard(LOpcode op, LInsp cond, LIns *x) {
return add_flush(out->insGuard(op,cond,x));
}
LIns* insBranch(LOpcode v, LInsp condition, LInsp to) {
return add_flush(out->insBranch(v, condition, to));
}
LIns* ins0(LOpcode v) {
if (v == LIR_label || v == LIR_start) {
flush();
}
return add(out->ins0(v));
}
LIns* ins1(LOpcode v, LInsp a) {
return isRet(v) ? add_flush(out->ins1(v, a)) : add(out->ins1(v, a));
}
LIns* ins2(LOpcode v, LInsp a, LInsp b) {
return v == LIR_2 ? out->ins2(v,a,b) : add(out->ins2(v, a, b));
}
LIns* insCall(const CallInfo *call, LInsp args[]) {
return add_flush(out->insCall(call, args));
}
LIns* insParam(int32_t i, int32_t kind) {
return add(out->insParam(i, kind));
}
LIns* insLoad(LOpcode v, LInsp base, LInsp disp) {
return add(out->insLoad(v, base, disp));
}
LIns* insStore(LInsp v, LInsp b, LInsp d) {
return add(out->insStore(v, b, d));
}
LIns* insStorei(LInsp v, LInsp b, int32_t d) {
return add(out->insStorei(v, b, d));
}
LIns* insAlloc(int32_t size) {
return add(out->insAlloc(size));
}
LIns* insImm(int32_t imm) {
return add(out->insImm(imm));
}
LIns* insImmq(uint64_t imm) {
return add(out->insImmq(imm));
}
};
#endif
class ExprFilter: public LirWriter
{
public:
ExprFilter(LirWriter *out) : LirWriter(out) {}
LIns* ins1(LOpcode v, LIns* a);
LIns* ins2(LOpcode v, LIns* a, LIns* b);
LIns* insGuard(LOpcode, LIns *cond, LIns *);
LIns* insBranch(LOpcode, LIns *cond, LIns *target);
};
// @todo, this could be replaced by a generic HashMap or HashSet, if we had one
class LInsHashSet
{
// must be a power of 2.
// don't start too small, or we'll waste time growing and rehashing.
// don't start too large, will waste memory.
static const uint32_t kInitialCap = 64;
LInsp *m_list; // explicit WB's are used, no DWB needed.
uint32_t m_used, m_cap;
avmplus::GC* m_gc;
static uint32_t FASTCALL hashcode(LInsp i);
uint32_t FASTCALL find(LInsp name, uint32_t hash, const LInsp *list, uint32_t cap);
static bool FASTCALL equals(LInsp a, LInsp b);
void FASTCALL grow();
public:
LInsHashSet(avmplus::GC* gc);
~LInsHashSet();
LInsp find32(int32_t a, uint32_t &i);
LInsp find64(uint64_t a, uint32_t &i);
LInsp find1(LOpcode v, LInsp a, uint32_t &i);
LInsp find2(LOpcode v, LInsp a, LInsp b, uint32_t &i);
LInsp findcall(const CallInfo *call, uint32_t argc, LInsp args[], uint32_t &i);
LInsp add(LInsp i, uint32_t k);
void replace(LInsp i);
void clear();
static uint32_t FASTCALL hashimm(int32_t);
static uint32_t FASTCALL hashimmq(uint64_t);
static uint32_t FASTCALL hash1(LOpcode v, LInsp);
static uint32_t FASTCALL hash2(LOpcode v, LInsp, LInsp);
static uint32_t FASTCALL hashcall(const CallInfo *call, uint32_t argc, LInsp args[]);
};
class CseFilter: public LirWriter
{
public:
LInsHashSet exprs;
CseFilter(LirWriter *out, avmplus::GC *gc);
LIns* insImm(int32_t imm);
LIns* insImmq(uint64_t q);
LIns* ins0(LOpcode v);
LIns* ins1(LOpcode v, LInsp);
LIns* ins2(LOpcode v, LInsp, LInsp);
LIns* insLoad(LOpcode v, LInsp b, LInsp d);
LIns* insCall(const CallInfo *call, LInsp args[]);
LIns* insGuard(LOpcode op, LInsp cond, LIns *x);
};
class LirBuffer : public avmplus::GCFinalizedObject
{
public:
DWB(Fragmento*) _frago;
LirBuffer(Fragmento* frago, const CallInfo* functions);
virtual ~LirBuffer();
void clear();
void rewind();
LInsp next();
bool outOMem() { return _noMem != 0; }
debug_only (void validate() const;)
verbose_only(DWB(LirNameMap*) names;)
int32_t insCount();
int32_t byteCount();
// stats
struct
{
uint32_t lir; // # instructions
}
_stats;
const CallInfo* _functions;
AbiKind abi;
LInsp state,param1,sp,rp;
LInsp savedRegs[NumSavedRegs];
bool explicitSavedRegs;
protected:
friend class LirBufWriter;
LInsp commit(uint32_t count);
Page* pageAlloc();
PageList _pages;
Page* _nextPage; // allocated in preperation of a needing to growing the buffer
LInsp _unused; // next unused instruction slot
int _noMem; // set if ran out of memory when writing to buffer
};
class LirBufWriter : public LirWriter
{
DWB(LirBuffer*) _buf; // underlying buffer housing the instructions
LInsp spref, rpref;
public:
LirBufWriter(LirBuffer* buf)
: LirWriter(0), _buf(buf) {
_functions = buf->_functions;
}
// LirWriter interface
LInsp insLoad(LOpcode op, LInsp base, LInsp off);
LInsp insStore(LInsp o1, LInsp o2, LInsp o3);
LInsp insStorei(LInsp o1, LInsp o2, int32_t imm);
LInsp ins0(LOpcode op);
LInsp ins1(LOpcode op, LInsp o1);
LInsp ins2(LOpcode op, LInsp o1, LInsp o2);
LInsp insParam(int32_t i, int32_t kind);
LInsp insImm(int32_t imm);
LInsp insImmq(uint64_t imm);
LInsp insCall(const CallInfo *call, LInsp args[]);
LInsp insGuard(LOpcode op, LInsp cond, LIns *x);
LInsp insBranch(LOpcode v, LInsp condition, LInsp to);
LInsp insAlloc(int32_t size);
// buffer mgmt
LInsp skip(size_t);
protected:
LInsp insFar(LOpcode op, LInsp target);
void ensureRoom(uint32_t count);
bool can8bReach(LInsp from, LInsp to) { return isU8(from-to-1); }
bool can24bReach(LInsp from, LInsp to){ return isS24(to-from); }
void prepFor(LInsp& i1, LInsp& i2, LInsp& i3);
void makeReachable(LInsp& o, LInsp from);
private:
LInsp insLinkTo(LOpcode op, LInsp to); // does NOT call ensureRoom()
LInsp insLinkToFar(LOpcode op, LInsp to); // does NOT call ensureRoom()
};
class LirFilter
{
public:
LirFilter *in;
LirFilter(LirFilter *in) : in(in) {}
virtual ~LirFilter(){}
virtual LInsp read() {
return in->read();
}
virtual LInsp pos() {
return in->pos();
}
};
// concrete
class LirReader : public LirFilter
{
LInsp _i; // current instruction that this decoder is operating on.
public:
LirReader(LirBuffer* buf) : LirFilter(0), _i(buf->next()-1) { }
LirReader(LInsp i) : LirFilter(0), _i(i) { }
virtual ~LirReader() {}
// LirReader i/f
LInsp read(); // advance to the prior instruction
LInsp pos() {
return _i;
}
void setpos(LIns *i) {
_i = i;
}
};
class Assembler;
void compile(Assembler *assm, Fragment *frag);
verbose_only(void live(avmplus::GC *gc, LirBuffer *lirbuf);)
class StackFilter: public LirFilter
{
avmplus::GC *gc;
LirBuffer *lirbuf;
LInsp sp;
avmplus::BitSet stk;
int top;
int getTop(LInsp br);
public:
StackFilter(LirFilter *in, avmplus::GC *gc, LirBuffer *lirbuf, LInsp sp);
virtual ~StackFilter() {}
LInsp read();
};
class CseReader: public LirFilter
{
LInsHashSet *exprs;
const CallInfo *functions;
public:
CseReader(LirFilter *in, LInsHashSet *exprs, const CallInfo*);
LInsp read();
};
// eliminate redundant loads by watching for stores & mutator calls
class LoadFilter: public LirWriter
{
public:
LInsp sp, rp;
LInsHashSet exprs;
void clear(LInsp p);
public:
LoadFilter(LirWriter *out, avmplus::GC *gc)
: LirWriter(out), exprs(gc) { }
LInsp ins0(LOpcode);
LInsp insLoad(LOpcode, LInsp base, LInsp disp);
LInsp insStore(LInsp v, LInsp b, LInsp d);
LInsp insStorei(LInsp v, LInsp b, int32_t d);
LInsp insCall(const CallInfo *call, LInsp args[]);
};
}
#endif // __nanojit_LIR__
|