1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>
<HEAD>
<TITLE>RANK Calculate the Rank of a Matrix
</TITLE>
</HEAD>
<BODY>
<H2>RANK Calculate the Rank of a Matrix
</H2>
<P>
Section: <A HREF=sec_array.html> Array Generation and Manipulations </A>
<H3>Usage</H3>
Returns the rank of a matrix. There are two ways to use
the <code>rank</code> function is
<PRE>
y = rank(A,tol)
</PRE>
<P>
where <code>tol</code> is the tolerance to use when computing the
rank. The second form is
<PRE>
y = rank(A)
</PRE>
<P>
in which case the tolerance <code>tol</code> is chosen as
<PRE>
tol = max(size(A))*max(s)*eps,
</PRE>
<P>
where <code>s</code> is the vector of singular values of <code>A</code>. The
rank is computed using the singular value decomposition <code>svd</code>.
<H3>Examples</H3>
Some examples of matrix rank calculations
<PRE>
--> rank([1,3,2;4,5,6])
ans =
2
--> rank([1,2,3;2,4,6])
ans =
1
</PRE>
<P>
Here we construct an ill-conditioned matrix, and show the use
of the <code>tol</code> argument.
<PRE>
--> A = [1,0;0,eps/2]
A =
1.0000 0
0 0.0000
--> rank(A)
ans =
1
--> rank(A,eps/8)
ans =
2
</PRE>
<P>
</BODY>
</HTML>
|