File: array_rank.html

package info (click to toggle)
freemat 4.0-3
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 174,756 kB
  • ctags: 67,023
  • sloc: cpp: 351,059; ansic: 255,892; sh: 40,590; makefile: 4,387; perl: 4,058; asm: 3,313; pascal: 2,718; fortran: 1,722; ada: 1,681; ml: 1,360; cs: 879; csh: 795; python: 430; sed: 162; lisp: 160; awk: 5
file content (68 lines) | stat: -rw-r--r-- 1,211 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<HTML>
<HEAD>
<TITLE>RANK Calculate the Rank of a Matrix
</TITLE>
</HEAD>
<BODY>
<H2>RANK Calculate the Rank of a Matrix
</H2>
<P>
Section: <A HREF=sec_array.html> Array Generation and Manipulations </A>
<H3>Usage</H3>
Returns the rank of a matrix.  There are two ways to use
the <code>rank</code> function is
<PRE>
   y = rank(A,tol)
</PRE>
<P>
where <code>tol</code> is the tolerance to use when computing the
rank.  The second form is
<PRE>
   y = rank(A)
</PRE>
<P>
in which case the tolerance <code>tol</code> is chosen as
<PRE>
   tol = max(size(A))*max(s)*eps,
</PRE>
<P>
where <code>s</code> is the vector of singular values of <code>A</code>.  The
rank is computed using the singular value decomposition <code>svd</code>.
<H3>Examples</H3>
Some examples of matrix rank calculations
<PRE>
--&gt; rank([1,3,2;4,5,6])

ans = 
 2 

--&gt; rank([1,2,3;2,4,6])

ans = 
 1 
</PRE>
<P>
Here we construct an ill-conditioned matrix, and show the use 
of the <code>tol</code> argument.
<PRE>
--&gt; A = [1,0;0,eps/2]

A = 
    1.0000         0 
         0    0.0000 

--&gt; rank(A)

ans = 
 1 

--&gt; rank(A,eps/8)

ans = 
 2 
</PRE>
<P>
</BODY>
</HTML>