File: mathfunctions_erfc.html

package info (click to toggle)
freemat 4.0-3
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 174,756 kB
  • ctags: 67,023
  • sloc: cpp: 351,059; ansic: 255,892; sh: 40,590; makefile: 4,387; perl: 4,058; asm: 3,313; pascal: 2,718; fortran: 1,722; ada: 1,681; ml: 1,360; cs: 879; csh: 795; python: 430; sed: 162; lisp: 160; awk: 5
file content (45 lines) | stat: -rw-r--r-- 1,096 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

<HTML>
<HEAD>
<TITLE>ERFC Complimentary Error Function
</TITLE>
</HEAD>
<BODY>
<H2>ERFC Complimentary Error Function
</H2>
<P>
Section: <A HREF=sec_mathfunctions.html> Mathematical Functions </A>
<H3>Usage</H3>
Computes the complimentary error function for real arguments.  The <code>erfc</code>
function takes only a single argument
<PRE>
  y = erfc(x)
</PRE>
<P>
where <code>x</code> is either a <code>float</code> or <code>double</code> array.  The output
vector <code>y</code> is the same size (and type) as <code>x</code>.
<H3>Function Internals</H3>
The erfc function is defined by the integral:
<P>
<DIV ALIGN="CENTER">
<IMG SRC="erfc_eqn1.png">
</DIV>
<P>
and is the integral of the normal distribution.
<H3>Example</H3>
Here is a plot of the <code>erfc</code> function over the range <code>[-5,5]</code>.
<PRE>
--&gt; x = linspace(-5,5);
--&gt; y = erfc(x);
--&gt; plot(x,y); xlabel('x'); ylabel('erfc(x)');
</PRE>
<P>
which results in the following plot.
<P>
<DIV ALIGN="CENTER">
<IMG SRC="erfc1.png">
</DIV>
<P>
</BODY>
</HTML>