1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
|
/////////////////////////////////////////////////////////////////////////////////
//
// Levenberg - Marquardt non-linear minimization algorithm
// Copyright (C) 2004-05 Manolis Lourakis (lourakis at ics forth gr)
// Institute of Computer Science, Foundation for Research & Technology - Hellas
// Heraklion, Crete, Greece.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
/////////////////////////////////////////////////////////////////////////////////
#ifndef LM_REAL // not included by misc.c
#error This file should not be compiled directly!
#endif
/* precision-specific definitions */
#define LEVMAR_CHKJAC LM_ADD_PREFIX(levmar_chkjac)
#define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
#define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx)
#define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
#define LEVMAR_STDDEV LM_ADD_PREFIX(levmar_stddev)
#define LEVMAR_CORCOEF LM_ADD_PREFIX(levmar_corcoef)
#define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check)
#define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy)
#ifdef HAVE_LAPACK
#define LEVMAR_PSEUDOINVERSE LM_ADD_PREFIX(levmar_pseudoinverse)
static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m);
/* BLAS matrix multiplication & LAPACK SVD routines */
#ifdef LM_BLAS_PREFIX
#define GEMM LM_CAT_(LM_BLAS_PREFIX, LM_ADD_PREFIX(LM_CAT_(gemm, LM_BLAS_SUFFIX)))
#else
#define GEMM LM_ADD_PREFIX(LM_CAT_(gemm, LM_BLAS_SUFFIX))
#endif
/* C := alpha*op( A )*op( B ) + beta*C */
extern void GEMM(char *transa, char *transb, int *m, int *n, int *k,
LM_REAL *alpha, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, LM_REAL *beta, LM_REAL *c, int *ldc);
#define GESVD LM_ADD_PREFIX(gesvd_)
#define GESDD LM_ADD_PREFIX(gesdd_)
extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu,
LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info);
/* lapack 3.0 new SVD routine, faster than xgesvd() */
extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt,
LM_REAL *work, int *lwork, int *iwork, int *info);
/* cholesky decomposition */
#define POTF2 LM_ADD_PREFIX(potf2_)
extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info);
#define LEVMAR_CHOLESKY LM_ADD_PREFIX(levmar_chol)
#else
#define LEVMAR_LUINVERSE LM_ADD_PREFIX(levmar_LUinverse_noLapack)
static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m);
#endif /* HAVE_LAPACK */
/* blocked multiplication of the transpose of the nxm matrix a with itself (i.e. a^T a)
* using a block size of bsize. The product is returned in b.
* Since a^T a is symmetric, its computation can be speeded up by computing only its
* upper triangular part and copying it to the lower part.
*
* More details on blocking can be found at
* http://www-2.cs.cmu.edu/afs/cs/academic/class/15213-f02/www/R07/section_a/Recitation07-SectionA.pdf
*/
void LEVMAR_TRANS_MAT_MAT_MULT(LM_REAL *a, LM_REAL *b, int n, int m)
{
#ifdef HAVE_LAPACK /* use BLAS matrix multiply */
LM_REAL alpha=LM_CNST(1.0), beta=LM_CNST(0.0);
/* Fool BLAS to compute a^T*a avoiding transposing a: a is equivalent to a^T in column major,
* therefore BLAS computes a*a^T with a and a*a^T in column major, which is equivalent to
* computing a^T*a in row major!
*/
GEMM("N", "T", &m, &m, &n, &alpha, a, &m, a, &m, &beta, b, &m);
#else /* no LAPACK, use blocking-based multiply */
register int i, j, k, jj, kk;
register LM_REAL sum, *bim, *akm;
const int bsize=__BLOCKSZ__;
#define __MIN__(x, y) (((x)<=(y))? (x) : (y))
#define __MAX__(x, y) (((x)>=(y))? (x) : (y))
/* compute upper triangular part using blocking */
for(jj=0; jj<m; jj+=bsize){
for(i=0; i<m; ++i){
bim=b+i*m;
for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j)
bim[j]=0.0; //b[i*m+j]=0.0;
}
for(kk=0; kk<n; kk+=bsize){
for(i=0; i<m; ++i){
bim=b+i*m;
for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j){
sum=0.0;
for(k=kk; k<__MIN__(kk+bsize, n); ++k){
akm=a+k*m;
sum+=akm[i]*akm[j]; //a[k*m+i]*a[k*m+j];
}
bim[j]+=sum; //b[i*m+j]+=sum;
}
}
}
}
/* copy upper triangular part to the lower one */
for(i=0; i<m; ++i)
for(j=0; j<i; ++j)
b[i*m+j]=b[j*m+i];
#undef __MIN__
#undef __MAX__
#endif /* HAVE_LAPACK */
}
/* forward finite difference approximation to the Jacobian of func */
void LEVMAR_FDIF_FORW_JAC_APPROX(
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
/* function to differentiate */
LM_REAL *p, /* I: current parameter estimate, mx1 */
LM_REAL *hx, /* I: func evaluated at p, i.e. hx=func(p), nx1 */
LM_REAL *hxx, /* W/O: work array for evaluating func(p+delta), nx1 */
LM_REAL delta, /* increment for computing the Jacobian */
LM_REAL *jac, /* O: array for storing approximated Jacobian, nxm */
int m,
int n,
void *adata)
{
register int i, j;
LM_REAL tmp;
register LM_REAL d;
for(j=0; j<m; ++j){
/* determine d=max(1E-04*|p[j]|, delta), see HZ */
d=LM_CNST(1E-04)*p[j]; // force evaluation
d=FABS(d);
if(d<delta)
d=delta;
tmp=p[j];
p[j]+=d;
(*func)(p, hxx, m, n, adata);
p[j]=tmp; /* restore */
d=LM_CNST(1.0)/d; /* invert so that divisions can be carried out faster as multiplications */
for(i=0; i<n; ++i){
jac[i*m+j]=(hxx[i]-hx[i])*d;
}
}
}
/* central finite difference approximation to the Jacobian of func */
void LEVMAR_FDIF_CENT_JAC_APPROX(
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
/* function to differentiate */
LM_REAL *p, /* I: current parameter estimate, mx1 */
LM_REAL *hxm, /* W/O: work array for evaluating func(p-delta), nx1 */
LM_REAL *hxp, /* W/O: work array for evaluating func(p+delta), nx1 */
LM_REAL delta, /* increment for computing the Jacobian */
LM_REAL *jac, /* O: array for storing approximated Jacobian, nxm */
int m,
int n,
void *adata)
{
register int i, j;
LM_REAL tmp;
register LM_REAL d;
for(j=0; j<m; ++j){
/* determine d=max(1E-04*|p[j]|, delta), see HZ */
d=LM_CNST(1E-04)*p[j]; // force evaluation
d=FABS(d);
if(d<delta)
d=delta;
tmp=p[j];
p[j]-=d;
(*func)(p, hxm, m, n, adata);
p[j]=tmp+d;
(*func)(p, hxp, m, n, adata);
p[j]=tmp; /* restore */
d=LM_CNST(0.5)/d; /* invert so that divisions can be carried out faster as multiplications */
for(i=0; i<n; ++i){
jac[i*m+j]=(hxp[i]-hxm[i])*d;
}
}
}
/*
* Check the Jacobian of a n-valued nonlinear function in m variables
* evaluated at a point p, for consistency with the function itself.
*
* Based on fortran77 subroutine CHKDER by
* Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
* Argonne National Laboratory. MINPACK project. March 1980.
*
*
* func points to a function from R^m --> R^n: Given a p in R^m it yields hx in R^n
* jacf points to a function implementing the Jacobian of func, whose correctness
* is to be tested. Given a p in R^m, jacf computes into the nxm matrix j the
* Jacobian of func at p. Note that row i of j corresponds to the gradient of
* the i-th component of func, evaluated at p.
* p is an input array of length m containing the point of evaluation.
* m is the number of variables
* n is the number of functions
* adata points to possible additional data and is passed uninterpreted
* to func, jacf.
* err is an array of length n. On output, err contains measures
* of correctness of the respective gradients. if there is
* no severe loss of significance, then if err[i] is 1.0 the
* i-th gradient is correct, while if err[i] is 0.0 the i-th
* gradient is incorrect. For values of err between 0.0 and 1.0,
* the categorization is less certain. In general, a value of
* err[i] greater than 0.5 indicates that the i-th gradient is
* probably correct, while a value of err[i] less than 0.5
* indicates that the i-th gradient is probably incorrect.
*
*
* The function does not perform reliably if cancellation or
* rounding errors cause a severe loss of significance in the
* evaluation of a function. therefore, none of the components
* of p should be unusually small (in particular, zero) or any
* other value which may cause loss of significance.
*/
void LEVMAR_CHKJAC(
void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),
LM_REAL *p, int m, int n, void *adata, LM_REAL *err)
{
LM_REAL factor=LM_CNST(100.0);
LM_REAL one=LM_CNST(1.0);
LM_REAL zero=LM_CNST(0.0);
LM_REAL *fvec, *fjac, *pp, *fvecp, *buf;
register int i, j;
LM_REAL eps, epsf, temp, epsmch;
LM_REAL epslog;
int fvec_sz=n, fjac_sz=n*m, pp_sz=m, fvecp_sz=n;
epsmch=LM_REAL_EPSILON;
eps=(LM_REAL)sqrt(epsmch);
buf=(LM_REAL *)malloc((fvec_sz + fjac_sz + pp_sz + fvecp_sz)*sizeof(LM_REAL));
if(!buf){
fprintf(stderr, LCAT(LEVMAR_CHKJAC, "(): memory allocation request failed\n"));
exit(1);
}
fvec=buf;
fjac=fvec+fvec_sz;
pp=fjac+fjac_sz;
fvecp=pp+pp_sz;
/* compute fvec=func(p) */
(*func)(p, fvec, m, n, adata);
/* compute the Jacobian at p */
(*jacf)(p, fjac, m, n, adata);
/* compute pp */
for(j=0; j<m; ++j){
temp=eps*FABS(p[j]);
if(temp==zero) temp=eps;
pp[j]=p[j]+temp;
}
/* compute fvecp=func(pp) */
(*func)(pp, fvecp, m, n, adata);
epsf=factor*epsmch;
epslog=(LM_REAL)log10(eps);
for(i=0; i<n; ++i)
err[i]=zero;
for(j=0; j<m; ++j){
temp=FABS(p[j]);
if(temp==zero) temp=one;
for(i=0; i<n; ++i)
err[i]+=temp*fjac[i*m+j];
}
for(i=0; i<n; ++i){
temp=one;
if(fvec[i]!=zero && fvecp[i]!=zero && FABS(fvecp[i]-fvec[i])>=epsf*FABS(fvec[i]))
temp=eps*FABS((fvecp[i]-fvec[i])/eps - err[i])/(FABS(fvec[i])+FABS(fvecp[i]));
err[i]=one;
if(temp>epsmch && temp<eps)
err[i]=((LM_REAL)log10(temp) - epslog)/epslog;
if(temp>=eps) err[i]=zero;
}
free(buf);
return;
}
#ifdef HAVE_LAPACK
/*
* This function computes the pseudoinverse of a square matrix A
* into B using SVD. A and B can coincide
*
* The function returns 0 in case of error (e.g. A is singular),
* the rank of A if successfull
*
* A, B are mxm
*
*/
static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m)
{
LM_REAL *buf=NULL;
int buf_sz=0;
static LM_REAL eps=LM_CNST(-1.0);
register int i, j;
LM_REAL *a, *u, *s, *vt, *work;
int a_sz, u_sz, s_sz, vt_sz, tot_sz;
LM_REAL thresh, one_over_denom;
int info, rank, worksz, *iwork, iworksz;
/* calculate required memory size */
worksz=16*m; /* more than needed */
iworksz=8*m;
a_sz=m*m;
u_sz=m*m; s_sz=m; vt_sz=m*m;
tot_sz=iworksz*sizeof(int) + (a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL);
buf_sz=tot_sz;
buf=(LM_REAL *)malloc(buf_sz);
if(!buf){
fprintf(stderr, RCAT("memory allocation in ", LEVMAR_PSEUDOINVERSE) "() failed!\n");
exit(1);
}
iwork=(int *)buf;
a=(LM_REAL *)(iwork+iworksz);
/* store A (column major!) into a */
for(i=0; i<m; i++)
for(j=0; j<m; j++)
a[i+j*m]=A[i*m+j];
u=a + a_sz;
s=u+u_sz;
vt=s+s_sz;
work=vt+vt_sz;
/* SVD decomposition of A */
GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info);
//GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info);
/* error treatment */
if(info!=0){
if(info<0){
fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", LEVMAR_PSEUDOINVERSE) "()\n", -info);
exit(1);
}
else{
fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", LEVMAR_PSEUDOINVERSE) "() [info=%d]\n", info);
free(buf);
return 0;
}
}
if(eps<0.0){
LM_REAL aux;
/* compute machine epsilon */
for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5))
;
eps*=LM_CNST(2.0);
}
/* compute the pseudoinverse in B */
for(i=0; i<a_sz; i++) B[i]=0.0; /* initialize to zero */
for(rank=0, thresh=eps*s[0]; rank<m && s[rank]>thresh; rank++){
one_over_denom=LM_CNST(1.0)/s[rank];
for(j=0; j<m; j++)
for(i=0; i<m; i++)
B[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom;
}
free(buf);
return rank;
}
#else // no LAPACK
/*
* This function computes the inverse of A in B. A and B can coincide
*
* The function employs LAPACK-free LU decomposition of A to solve m linear
* systems A*B_i=I_i, where B_i and I_i are the i-th columns of B and I.
*
* A and B are mxm
*
* The function returns 0 in case of error,
* 1 if successfull
*
*/
static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m)
{
void *buf=NULL;
int buf_sz=0;
register int i, j, k, l;
int *idx, maxi=-1, idx_sz, a_sz, x_sz, work_sz, tot_sz;
LM_REAL *a, *x, *work, max, sum, tmp;
/* calculate required memory size */
idx_sz=m;
a_sz=m*m;
x_sz=m;
work_sz=m;
tot_sz=idx_sz*sizeof(int) + (a_sz+x_sz+work_sz)*sizeof(LM_REAL);
buf_sz=tot_sz;
buf=(void *)malloc(tot_sz);
if(!buf){
fprintf(stderr, RCAT("memory allocation in ", LEVMAR_LUINVERSE) "() failed!\n");
exit(1);
}
idx=(int *)buf;
a=(LM_REAL *)(idx + idx_sz);
x=a + a_sz;
work=x + x_sz;
/* avoid destroying A by copying it to a */
for(i=0; i<a_sz; ++i) a[i]=A[i];
/* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */
for(i=0; i<m; ++i){
max=0.0;
for(j=0; j<m; ++j)
if((tmp=FABS(a[i*m+j]))>max)
max=tmp;
if(max==0.0){
fprintf(stderr, RCAT("Singular matrix A in ", LEVMAR_LUINVERSE) "()!\n");
free(buf);
return 0;
}
work[i]=LM_CNST(1.0)/max;
}
for(j=0; j<m; ++j){
for(i=0; i<j; ++i){
sum=a[i*m+j];
for(k=0; k<i; ++k)
sum-=a[i*m+k]*a[k*m+j];
a[i*m+j]=sum;
}
max=0.0;
for(i=j; i<m; ++i){
sum=a[i*m+j];
for(k=0; k<j; ++k)
sum-=a[i*m+k]*a[k*m+j];
a[i*m+j]=sum;
if((tmp=work[i]*FABS(sum))>=max){
max=tmp;
maxi=i;
}
}
if(j!=maxi){
for(k=0; k<m; ++k){
tmp=a[maxi*m+k];
a[maxi*m+k]=a[j*m+k];
a[j*m+k]=tmp;
}
work[maxi]=work[j];
}
idx[j]=maxi;
if(a[j*m+j]==0.0)
a[j*m+j]=LM_REAL_EPSILON;
if(j!=m-1){
tmp=LM_CNST(1.0)/(a[j*m+j]);
for(i=j+1; i<m; ++i)
a[i*m+j]*=tmp;
}
}
/* The decomposition has now replaced a. Solve the m linear systems using
* forward and back substitution
*/
for(l=0; l<m; ++l){
for(i=0; i<m; ++i) x[i]=0.0;
x[l]=LM_CNST(1.0);
for(i=k=0; i<m; ++i){
j=idx[i];
sum=x[j];
x[j]=x[i];
if(k!=0)
for(j=k-1; j<i; ++j)
sum-=a[i*m+j]*x[j];
else
if(sum!=0.0)
k=i+1;
x[i]=sum;
}
for(i=m-1; i>=0; --i){
sum=x[i];
for(j=i+1; j<m; ++j)
sum-=a[i*m+j]*x[j];
x[i]=sum/a[i*m+i];
}
for(i=0; i<m; ++i)
B[i*m+l]=x[i];
}
free(buf);
return 1;
}
#endif /* HAVE_LAPACK */
/*
* This function computes in C the covariance matrix corresponding to a least
* squares fit. JtJ is the approximate Hessian at the solution (i.e. J^T*J, where
* J is the Jacobian at the solution), sumsq is the sum of squared residuals
* (i.e. goodnes of fit) at the solution, m is the number of parameters (variables)
* and n the number of observations. JtJ can coincide with C.
*
* if JtJ is of full rank, C is computed as sumsq/(n-m)*(JtJ)^-1
* otherwise and if LAPACK is available, C=sumsq/(n-r)*(JtJ)^+
* where r is JtJ's rank and ^+ denotes the pseudoinverse
* The diagonal of C is made up from the estimates of the variances
* of the estimated regression coefficients.
* See the documentation of routine E04YCF from the NAG fortran lib
*
* The function returns the rank of JtJ if successful, 0 on error
*
* A and C are mxm
*
*/
int LEVMAR_COVAR(LM_REAL *JtJ, LM_REAL *C, LM_REAL sumsq, int m, int n)
{
register int i;
int rnk;
LM_REAL fact;
#ifdef HAVE_LAPACK
rnk=LEVMAR_PSEUDOINVERSE(JtJ, C, m);
if(!rnk) return 0;
#else
#ifdef _MSC_VER
#pragma message("LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times")
#else
#warning LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times
#endif // _MSC_VER
rnk=LEVMAR_LUINVERSE(JtJ, C, m);
if(!rnk) return 0;
rnk=m; /* assume full rank */
#endif /* HAVE_LAPACK */
fact=sumsq/(LM_REAL)(n-rnk);
for(i=0; i<m*m; ++i)
C[i]*=fact;
return rnk;
}
/* standard deviation of the best-fit parameter i.
* covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()).
*
* The standard deviation is computed as \sigma_{i} = \sqrt{C_{ii}}
*/
LM_REAL LEVMAR_STDDEV(LM_REAL *covar, int m, int i)
{
return (LM_REAL)sqrt(covar[i*m+i]);
}
/* Pearson's correlation coefficient of the best-fit parameters i and j.
* covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()).
*
* The coefficient is computed as \rho_{ij} = C_{ij} / sqrt(C_{ii} C_{jj})
*/
LM_REAL LEVMAR_CORCOEF(LM_REAL *covar, int m, int i, int j)
{
return (LM_REAL)(covar[i*m+j]/sqrt(covar[i*m+i]*covar[j*m+j]));
}
/* check box constraints for consistency */
int LEVMAR_BOX_CHECK(LM_REAL *lb, LM_REAL *ub, int m)
{
register int i;
if(!lb || !ub) return 1;
for(i=0; i<m; ++i)
if(lb[i]>ub[i]) return 0;
return 1;
}
#ifdef HAVE_LAPACK
/* compute the Cholesky decompostion of C in W, s.t. C=W^t W and W is upper triangular */
int LEVMAR_CHOLESKY(LM_REAL *C, LM_REAL *W, int m)
{
register int i, j;
int info;
/* copy weights array C to W (in column-major order!) so that LAPACK won't destroy it */
for(i=0; i<m; i++)
for(j=0; j<m; j++)
W[i+j*m]=C[i*m+j];
/* cholesky decomposition */
POTF2("U", (int *)&m, W, (int *)&m, (int *)&info);
/* error treatment */
if(info!=0){
if(info<0){
fprintf(stderr, "LAPACK error: illegal value for argument %d of dpotf2 in %s\n", -info, LCAT(LEVMAR_DER, "()"));
exit(1);
}
else{
fprintf(stderr, "LAPACK error: the leading minor of order %d is not positive definite,\n%s()\n", info,
RCAT("and the cholesky factorization could not be completed in ", LEVMAR_CHOLESKY));
return LM_ERROR;
}
}
/* the decomposition is in the upper part of W (in column-major order!).
* copying it to the lower part and zeroing the upper transposes
* W in row-major order
*/
for(i=0; i<m; i++)
for(j=0; j<i; j++){
W[i+j*m]=W[j+i*m];
W[j+i*m]=0.0;
}
return 0;
}
#endif /* HAVE_LAPACK */
/* Compute e=x-y for two n-vectors x and y and return the squared L2 norm of e.
* e can coincide with either x or y; x can be NULL, in which case it is assumed
* to be equal to the zero vector.
* Uses loop unrolling and blocking to reduce bookkeeping overhead & pipeline
* stalls and increase instruction-level parallelism; see http://www.abarnett.demon.co.uk/tutorial.html
*/
LM_REAL LEVMAR_L2NRMXMY(LM_REAL *e, LM_REAL *x, LM_REAL *y, int n)
{
const int blocksize=8, bpwr=3; /* 8=2^3 */
register int i;
int j1, j2, j3, j4, j5, j6, j7;
int blockn;
register LM_REAL sum0=0.0, sum1=0.0, sum2=0.0, sum3=0.0;
/* n may not be divisible by blocksize,
* go as near as we can first, then tidy up.
*/
blockn = (n>>bpwr)<<bpwr; /* (n / blocksize) * blocksize; */
if(x){
/* unroll the loop in blocks of `blocksize' */
for(i=0; i<blockn; i+=blocksize){
e[i ]=x[i ]-y[i ]; sum0+=e[i ]*e[i ];
j1=i+1; e[j1]=x[j1]-y[j1]; sum1+=e[j1]*e[j1];
j2=i+2; e[j2]=x[j2]-y[j2]; sum2+=e[j2]*e[j2];
j3=i+3; e[j3]=x[j3]-y[j3]; sum3+=e[j3]*e[j3];
j4=i+4; e[j4]=x[j4]-y[j4]; sum0+=e[j4]*e[j4];
j5=i+5; e[j5]=x[j5]-y[j5]; sum1+=e[j5]*e[j5];
j6=i+6; e[j6]=x[j6]-y[j6]; sum2+=e[j6]*e[j6];
j7=i+7; e[j7]=x[j7]-y[j7]; sum3+=e[j7]*e[j7];
}
/*
* There may be some left to do.
* This could be done as a simple for() loop,
* but a switch is faster (and more interesting)
*/
if(i<n){
/* Jump into the case at the place that will allow
* us to finish off the appropriate number of items.
*/
switch(n - i){
case 7 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i;
case 6 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i;
case 5 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i;
case 4 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i;
case 3 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i;
case 2 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i;
case 1 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i;
}
}
}
else{ /* x==0 */
/* unroll the loop in blocks of `blocksize' */
for(i=0; i<blockn; i+=blocksize){
e[i ]=-y[i ]; sum0+=e[i ]*e[i ];
j1=i+1; e[j1]=-y[j1]; sum1+=e[j1]*e[j1];
j2=i+2; e[j2]=-y[j2]; sum2+=e[j2]*e[j2];
j3=i+3; e[j3]=-y[j3]; sum3+=e[j3]*e[j3];
j4=i+4; e[j4]=-y[j4]; sum0+=e[j4]*e[j4];
j5=i+5; e[j5]=-y[j5]; sum1+=e[j5]*e[j5];
j6=i+6; e[j6]=-y[j6]; sum2+=e[j6]*e[j6];
j7=i+7; e[j7]=-y[j7]; sum3+=e[j7]*e[j7];
}
/*
* There may be some left to do.
* This could be done as a simple for() loop,
* but a switch is faster (and more interesting)
*/
if(i<n){
/* Jump into the case at the place that will allow
* us to finish off the appropriate number of items.
*/
switch(n - i){
case 7 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i;
case 6 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i;
case 5 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i;
case 4 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i;
case 3 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i;
case 2 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i;
case 1 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i;
}
}
}
return sum0+sum1+sum2+sum3;
}
/* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */
#undef LEVMAR_PSEUDOINVERSE
#undef LEVMAR_LUINVERSE
#undef LEVMAR_BOX_CHECK
#undef LEVMAR_CHOLESKY
#undef LEVMAR_COVAR
#undef LEVMAR_STDDEV
#undef LEVMAR_CORCOEF
#undef LEVMAR_CHKJAC
#undef LEVMAR_FDIF_FORW_JAC_APPROX
#undef LEVMAR_FDIF_CENT_JAC_APPROX
#undef LEVMAR_TRANS_MAT_MAT_MULT
#undef LEVMAR_L2NRMXMY
|