File: operators_matrixpower.html

package info (click to toggle)
freemat 4.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 141,800 kB
  • ctags: 14,082
  • sloc: ansic: 126,788; cpp: 62,046; python: 2,080; perl: 1,255; sh: 1,146; yacc: 1,019; lex: 239; makefile: 100
file content (126 lines) | stat: -rw-r--r-- 5,832 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
<title>FreeMat: MATRIXPOWER Matrix Power Operator</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
  $(document).ready(initResizable);
</script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
 <tbody>
 <tr style="height: 56px;">
  <td style="padding-left: 0.5em;">
   <div id="projectname">FreeMat
   </div>
  </td>
 </tr>
 </tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.8.1.1 -->
  <div id="navrow1" class="tabs">
    <ul class="tablist">
      <li><a href="index.html"><span>Main&#160;Page</span></a></li>
      <li class="current"><a href="pages.html"><span>Related&#160;Pages</span></a></li>
    </ul>
  </div>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
  <div id="nav-tree">
    <div id="nav-tree-contents">
    </div>
  </div>
  <div id="splitbar" style="-moz-user-select:none;" 
       class="ui-resizable-handle">
  </div>
</div>
<script type="text/javascript">
$(document).ready(function(){initNavTree('operators_matrixpower.html','');});
</script>
<div id="doc-content">
<div class="header">
  <div class="headertitle">
<div class="title">MATRIXPOWER Matrix Power Operator </div>  </div>
</div><!--header-->
<div class="contents">
<div class="textblock"><p>Section: <a class="el" href="sec_operators.html">Mathematical Operators</a> </p>
<h1><a class="anchor" id="Usage"></a>
Usage</h1>
<p>The power operator for scalars and square matrices. This operator is really a combination of two operators, both of which have the same general syntax: </p>
<pre class="fragment">  y = a ^ b
</pre><p> The exact action taken by this operator, and the size and type of the output, depends on which of the two configurations of <code>a</code> and <code>b</code> is present: </p>
<ol>
<li>
<code>a</code> is a scalar, <code>b</code> is a square matrix  </li>
<li>
<code>a</code> is a square matrix, <code>b</code> is a scalar  </li>
</ol>
<h1><a class="anchor" id="Function"></a>
Internals</h1>
<p>In the first case that <code>a</code> is a scalar, and <code>b</code> is a square matrix, the matrix power is defined in terms of the eigenvalue decomposition of <code>b</code>. Let <code>b</code> have the following eigen-decomposition (problems arise with non-symmetric matrices <code>b</code>, so let us assume that <code>b</code> is symmetric): </p>
<p class="formulaDsp">
<img class="formulaDsp" alt="\[ b = E \begin{bmatrix} \lambda_1 &amp; 0 &amp; \cdots &amp; 0 \\ 0 &amp; \lambda_2 &amp; \ddots &amp; \vdots \\ \vdots &amp; \ddots &amp; \ddots &amp; 0 \\ 0 &amp; \hdots &amp; 0 &amp; \lambda_n \end{bmatrix} E^{-1} \]" src="form_122.png"/>
</p>
<p> Then <code>a</code> raised to the power <code>b</code> is defined as </p>
<p class="formulaDsp">
<img class="formulaDsp" alt="\[ a^{b} = E \begin{bmatrix} a^{\lambda_1} &amp; 0 &amp; \cdots &amp; 0 \\ 0 &amp; a^{\lambda_2} &amp; \ddots &amp; \vdots \\ \vdots &amp; \ddots &amp; \ddots &amp; 0 \\ 0 &amp; \hdots &amp; 0 &amp; a^{\lambda_n} \end{bmatrix} E^{-1} \]" src="form_123.png"/>
</p>
<p> Similarly, if <code>a</code> is a square matrix, then <code>a</code> has the following eigen-decomposition (again, suppose <code>a</code> is symmetric): </p>
<p class="formulaDsp">
<img class="formulaDsp" alt="\[ a = E \begin{bmatrix} \lambda_1 &amp; 0 &amp; \cdots &amp; 0 \\ 0 &amp; \lambda_2 &amp; \ddots &amp; \vdots \\ \vdots &amp; \ddots &amp; \ddots &amp; 0 \\ 0 &amp; \hdots &amp; 0 &amp; \lambda_n \end{bmatrix} E^{-1} \]" src="form_124.png"/>
</p>
<p> Then <code>a</code> raised to the power <code>b</code> is defined as </p>
<p class="formulaDsp">
<img class="formulaDsp" alt="\[ a^{b} = E \begin{bmatrix} \lambda_1^b &amp; 0 &amp; \cdots &amp; 0 \\ 0 &amp; \lambda_2^b &amp; \ddots &amp; \vdots \\ \vdots &amp; \ddots &amp; \ddots &amp; 0 \\ 0 &amp; \hdots &amp; 0 &amp; \lambda_n^b \end{bmatrix} E^{-1} \]" src="form_125.png"/>
</p>
 <h1><a class="anchor" id="Examples"></a>
Examples</h1>
<p>We first define a simple <code>2 x 2</code> symmetric matrix</p>
<pre class="fragment">--&gt; A = 1.5

A = 
    1.5000 

--&gt; B = [1,.2;.2,1]

B = 
    1.0000    0.2000 
    0.2000    1.0000 
</pre><p>First, we raise <code>B</code> to the (scalar power) <code>A</code>:</p>
<pre class="fragment">--&gt; C = B^A

C = 
    1.0150    0.2995 
    0.2995    1.0150 
</pre><p>Next, we raise <code>A</code> to the matrix power <code>B</code>:</p>
<pre class="fragment">--&gt; C = A^B

C = 
    1.5049    0.1218 
    0.1218    1.5049 
</pre> </div></div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
  <ul>
    <li class="navelem"><a class="el" href="index.html">FreeMat Documentation</a></li><li class="navelem"><a class="el" href="sec_operators.html">Mathematical Operators</a></li>
    <li class="footer">Generated on Thu Jul 25 2013 17:17:45 for FreeMat by
    <a href="http://www.doxygen.org/index.html">
    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.1.1 </li>
  </ul>
</div>
</body>
</html>