1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
|
"""
Character represents the personalization of the AI.
Character is composed of orthogonal elements called Trait. Trait
elements are orthogonal, which means that they do not interact and can be
freely mixed and matched to create a Character. Orthogonality means
that they can be tested independently and combined with simple
combiners.
Character creates big changes in the trait of the AI that are visible
to the player as personality. At key/tap points the AI checks the character
for permission 'may_<do something>' or preference of a series of
alternative actions 'prefer_<somethings>'. Preference could be expanded
to look at all of the options and remove those that the trait
forbids.
Permission type taps are named may_<do something>(information needed to decide).
The trait examines the information and returns true if that action is permitted.
Preference type taps are named prefer_<somethings>(alternatives, extra info).
Alternatives is a list of all possible actions. The trait examines all
the alternatives and returns a possibly empty list of the permissible
actions.
Character should be invoked by other modules at key trait tap points to
provide direction not optimization. For example which empire/species do
I love/hate enough to attack.
The gated traits should be big user discernable changes, not small
coefficient optimizations better handled with a local optimization
routine. If there are setup options to the trait they should fall
into 2 (on/off) or 3 settings. For example,
deceitful/typical/trustworthy. The idea is not to create deep, subtle,
nuanced personalities, but writ large Shakespearean characters that draw the
player into the narrative structure of the particular game that they are playing.
Each AI will get the mandatory trait (probably Difficulty/Challenge)
and a selection of the optional traits.
There is no need for per species trait. Each playable species can be
assigned some additional mandatory trait(s). For example the Trith and
a mandatory Genocidal trait. Perhaps add a probabilty distribution of
trait components to the FOCS description of a playable species.
"""
# Some ideas for future trait modules are:
# TODO: challenge/difficulty -- to replace the difficulty related portions
# of aggression.
#
# TODO: research bent -- models an obsession/focus/repulsion by a particular
# area of research. i.e. Shields are for grues.
#
# TODO: nemesis/single-minded -- model a focus on a single opponent, perhaps
# the first one to attack the AI. This plays well with CharacterStrings
# which can be used to inform all players who care that "I will hunt the
# Dominion to the ends of the galaxy." Humans and eventually AIs could
# use this to modify their risk assessment of this AI.
#
# TODO: deceitful/trustworthy -- Only useful after treaties are implemented to
# determine if this AI will abide by the treaty
#
# TODO: friendly and loyal -- Even without treaties this AI will assist their
# friends.
#
# TODO: vengeful -- An eye for eye. AI generally counter attacks until things
# are made right or even.
#
# TODO: risk averse/gambler -- How much overkill does the AI require? How risky
# a research strategy will it attempt? How many redundant buildings does
# the AI build?
#
# TODO: warlike/peaceful -- Will the AI prefer colonization to war?
#
# TODO: cooperative/loner -- Once cooperative treaties (joint attack, sharing
# system) are implemented, will the AI use them?
#
# TODO: taciturn/chatty -- How often does the AI chat?
#
# TODO: genocidal -- Will the AI research and use Concentration Camps/bombard
# weapons/planet and star destroying weapons? Is the AI horrified by the
# use of such weapons? Will the AI band together with other like minded
# empires to protect the galaxy?
#
import abc
import freeOrionAIInterface as fo
import math
import random
from collections import Counter
from logging import debug, warning
class Trait(metaclass=abc.ABCMeta):
"""An abstract class representing a type of trait of the AI.
Traits give the AI personality along some dimension.
Traits do not help the AI make optimal decisions, they determine whether
certain actions are permissible or preferable.
Traits are combined to form a single Character.
Traits have taps which the AI calls to determine it trait with
respect to a single action. There are two types of taps: permission
taps which permit/forbid an action and preference taps which indicate
which of several alternatives are permissible.
Permission type taps are named may_<do something>(information needed to decide).
The trait examines the information and returns true if that action is
permitted.
Preference type taps are named prefer_<somethings>(alternatives, extra info).
Alternatives is a list of all possible actions. The trait examines all of
the alternatives and returns a possibly empty list of the permissible actions.
Any given Trait class should not implement all the taps, only those
it needs to override to cause the relevant trait.
"""
def __repr__(self):
return "Trait"
# @abc.abstractproperty
@property
def key(self): # pylint: disable=no-self-use,unused-argument
"""Return a key to be used as an index into look up tables.
For example, a string table of 6 diplomatic responses bases on aggression might look like:
table_x = {fo.aggression.beginner: "DIPLO_X_BEGINNER",
fo.aggression.turtle: "DIPLO_X_TURTLE",
fo.aggression.cautious: "DIPLO_X_CAUTIOUS",
fo.aggression.typical: "DIPLO_X_TYPICAL",
fo.aggression.aggressive: "DIPLO_X_AGGRESSIVE",
fo.aggression.maniacal: "DIPLO_X_MANIACAL"}
Using the key to fetch a single string from that table_x looks like:
used_string_x = table_x[character.get_trait(Character.Trait.Aggression).key]
See character_strings_module.py for the details of this actual example.
"""
return None
def may_explore_system(self, monster_threat): # pylint: disable=no-self-use,unused-argument
"""Return True if permitted to explore system with the given monster threat."""
return True
def may_surge_industry(self, totalPP, totalRP): # pylint: disable=no-self-use,unused-argument
"""Return True if permitted to surge industry as used in PriorityAI.py"""
return True
def may_maximize_research(self): # pylint: disable=no-self-use,unused-argument
"""Return True if permitted to maximize research."""
return True
def preferred_research_cutoff(self, alternatives): # pylint: disable=no-self-use,unused-argument
"""Return preferred research cutoff from the list of alternatives."""
# TODO Remove this tap it is one of the empire id dependent taps. See EmpireIDTrait.
return None
def max_number_colonies(self): # pylint: disable=no-self-use,unused-argument
"""Return maximum allowed number of colonies"""
return 1000000
def may_invade(self): # pylint: disable=no-self-use,unused-argument
"""Return True if permitted to invade."""
return True
def may_invade_with_bases(self): # pylint: disable=no-self-use,unused-argument
"""Return True if permitted to invade with bases."""
return True
def invasion_priority_scaling(self): # pylint: disable=no-self-use,unused-argument
return 1.0
def military_priority_scaling(self): # pylint: disable=no-self-use,unused-argument
return 1.0
def preferred_colonization_portion(self, alternatives): # pylint: disable=no-self-use,unused-argument
"""Select from the fractions in alternatives the fraction of PP to be spend on colonization."""
# TODO Remove this tap it is one of the empire id dependent taps. See EmpireIDTrait.
return None
def preferred_outpost_portion(self, alternatives): # pylint: disable=no-self-use,unused-argument
"""Select from the fractions in alternatives the fraction of PP to be spend on outposts."""
# TODO Remove this tap it is one of the empire id dependent taps. See EmpireIDTrait.
return None
def preferred_building_ratio(self, alternatives): # pylint: disable=no-self-use,unused-argument
"""Select a fraction less than 1 from alternatives as the maximum ratio of PP for buildings"""
# TODO Remove this tap it is one of the empire id dependent taps. See EmpireIDTrait.
return None
def preferred_discount_multiplier(self, alternatives): # pylint: disable=no-self-use,unused-argument
"""Select a discount multiplier from the alternatives provided for
use in evaluate planet in Colonisation.py to scale pilot rating and
a long list of technologies.
"""
# TODO Remove this tap it is one of the empire id dependent taps. See EmpireIDTrait.
return None
def max_defense_portion(self): # pylint: disable=no-self-use,unused-argument
"""Return maximum fraction of production for defense"""
return 1.0
def check_orbital_production(self): # pylint: disable=no-self-use,unused-argument
"""Return true if orbital defense production should be checked this turn in ProductionAI.py"""
return False
def target_number_of_orbitals(self): # pylint: disable=no-self-use,unused-argument
"""Return target number of orbitals defenses to be built."""
return 0
def may_build_building(self, building): # pylint: disable=no-self-use,unused-argument
"""Return True if permitted to build ''building''"""
return True
def may_produce_troops(self): # pylint: disable=no-self-use,unused-argument
"""Return True if permitted to produce troop ships"""
return True
def military_safety_factor(self): # pylint: disable=no-self-use,unused-argument
"""Return military safety factor, the ratio of
(enemy strength) / (own strength) that the AI considers acceptable risk.
"""
return 0.0
def may_research_heavily(self): # pylint: disable=no-self-use,unused-argument
"""Return true if allowed to target research/industry > 1.5"""
return True
def may_use_growth_focus(self):
"""Return True if permitted to use growth focus."""
return True
def may_travel_beyond_supply(self, distance): # pylint: disable=no-self-use,unused-argument
"""Return True if able to travel distance hops beyond empire supply"""
# TODO Remove this tap it is one of the empire id dependent taps. See EmpireIDTrait.
return True
def get_research_index(self): # pylint: disable=no-self-use,unused-argument
"""Deprecated. Only used with old style research."""
# TODO Remove this tap when old style research is removed.
return None
def may_research_xeno_genetics_variances(self): # pylint: disable=no-self-use,unused-argument
"""Return True if AI if allowed to research xeno genetics research 'Dep.GRO_XENO_GENETICS'."""
# TODO remove this as overly specific
return True
def prefer_research_defensive(self): # pylint: disable=no-self-use,unused-argument
"""Return True if should prefer defensive tech research"""
return True
def prefer_research_low_aggression(self): # pylint: disable=no-self-use,unused-argument
"""Return True if should prefer less aggressive tech research"""
return True
def may_research_tech(self, tech): # pylint: disable=no-self-use,unused-argument
"""Return True if permitted to research ''tech''. This is only called by the new research algorithm."""
return True
def may_research_tech_classic(self, tech): # pylint: disable=no-self-use,unused-argument
"""Return True if permitted to research ''tech''. This is called in the classic research algorithm."""
# TODO remove this tap when the classic research algorithm is removed.
return True
def attitude_to_empire(self, other_empire_id, diplomatic_logs): # pylint: disable=no-self-use,unused-argument
"""Return a value from [-10 .. 10] representing attitude towards other empire."""
return None
def warship_adjusted_production_cost_exponent(self): # pylint: disable=no-self-use,unused-argument
"""Return an exponent to scale the production cost of a warship in ShipDesignAI."""
return None
def secondary_valuation_factor_for_invasion_targets(self): # pylint: disable=no-self-use,unused-argument
"""Return a value in range [0.0 : 1.0], used in colonization scoring calculations where subscores for a primary
planet depend on traits of secondary planets, for what portion of the subscore should be assigned if the secondary
planet would need to be acquired via invasion"""
return None
class Aggression(Trait):
"""A trait that models level of difficulty and aggression."""
# The initial implementation was to pull aggression dependent code from
# the main body of code into this trait Aggression. These are merely
# refactoring of existing code and is not an example of ideal
# implementation.
# Aggression implements two different traits as one: difficulty and
# aggression. It creates too many decision points not clearly related to
# either concept. Aggression should be broken into two traits:
# difficulty/challenge and aggression.
# TODO break this class into two traits: level of difficulty and aggression
def __init__(self, aggression):
self.aggression = aggression
@property
def key(self):
return self.aggression
def may_explore_system(self, monster_threat):
return monster_threat < 2000 * self.aggression
def may_surge_industry(self, total_pp, total_rp):
return (self.aggression > fo.aggression.cautious) and ((total_pp + 1.6 * total_rp) < (50 * self.aggression))
def may_maximize_research(self):
return self.aggression >= fo.aggression.maniacal
def max_number_colonies(self):
# significant growth barrier for low aggression, negligible for high aggression
# TODO: consider further changes, including a dependency on galaxy size and planet density
return 2 + ((0.5 + 1.4 * self.aggression) ** 2) * fo.currentTurn() / 50.0
def may_invade(self):
return self.aggression > fo.aggression.turtle and not (
self.aggression == fo.aggression.beginner and fo.currentTurn() < 150
)
def may_invade_with_bases(self):
return self.aggression > fo.aggression.typical
def invasion_priority_scaling(self):
return 0.5 if self.aggression == fo.aggression.beginner else 1.0
def military_priority_scaling(self):
return (
1.0
if self.aggression > fo.aggression.typical
else ((1.0 + self.aggression) / (1.0 + fo.aggression.typical))
)
def max_defense_portion(self):
return [0.7, 0.4, 0.3, 0.2, 0.1, 0.0][self.aggression]
def check_orbital_production(self):
aggression_index = max(1, self.aggression)
return ((fo.currentTurn() % aggression_index) == 0) and self.aggression < fo.aggression.maniacal
def target_number_of_orbitals(self):
aggression_index = max(1, self.aggression)
return min(
int(((fo.currentTurn() + 4) / (8.0 * aggression_index**1.5)) ** 0.8),
fo.aggression.maniacal - aggression_index,
)
BUILDING_TABLE_STATIC = {
"BLD_SHIPYARD_AST": fo.aggression.beginner,
"BLD_GAS_GIANT_GEN": fo.aggression.beginner,
"BLD_SOL_ORB_GEN": fo.aggression.turtle,
"BLD_ART_BLACK_HOLE": fo.aggression.typical,
"BLD_BLACK_HOLE_POW_GEN": fo.aggression.cautious,
"BLD_CONC_CAMP": fo.aggression.typical,
"BLD_SHIPYARD_CON_NANOROBO": fo.aggression.aggressive,
"BLD_SHIPYARD_CON_GEOINT": fo.aggression.aggressive,
# TODO determine which duplicate of BLD_SHIPYARD_AST is correct
# "BLD_SHIPYARD_AST": fo.aggression.typical,
"BLD_SHIPYARD_AST_REF": fo.aggression.maniacal,
"BLD_SHIPYARD_ORG_CELL_GRO_CHAMB": fo.aggression.aggressive,
"BLD_SHIPYARD_ORG_XENO_FAC": fo.aggression.aggressive,
"BLD_SHIPYARD_ENRG_COMP": fo.aggression.aggressive,
"BLD_SHIPYARD_ENRG_SOLAR": fo.aggression.maniacal,
"BLD_NEUTRONIUM_FORGE": fo.aggression.cautious,
}
@property
def building_table(self):
return type(self).BUILDING_TABLE_STATIC
def may_build_building(self, building):
return self.aggression > self.building_table.get(building, fo.aggression.beginner)
def may_produce_troops(self):
# TODO check if this is consitent with may invade
return self.aggression >= fo.aggression.typical
def military_safety_factor(self):
return [4.0, 3.0, 2.0, 1.5, 1.2, 1.0][self.aggression]
def may_research_heavily(self):
return self.aggression > fo.aggression.cautious
def may_use_growth_focus(self):
# For now, allow using growth focus for all aggression settings
# but leaving this here for easier modification.
return self.aggression >= fo.aggression.beginner
def may_research_xeno_genetics_variances(self):
return self.aggression >= fo.aggression.cautious
def prefer_research_defensive(self):
return self.aggression <= fo.aggression.cautious
def prefer_research_low_aggression(self):
return self.aggression < fo.aggression.typical
tech_lower_threshold_static = {"LRN_TRANSCEND": fo.aggression.aggressive}
def may_research_tech(self, tech):
return type(self).tech_lower_threshold_static.get(tech, fo.aggression.beginner) <= self.aggression
TECH_UPPER_THRESHOLD_CLASSIC_STATIC = {
"DEF_DEFENSE_NET_1": fo.aggression.cautious,
"DEF_GARRISON_1": fo.aggression.cautious,
"GRO_XENO_GENETICS": fo.aggression.cautious,
"GRO_GENETIC_ENG": fo.aggression.cautious,
}
TECH_LOWER_THRESHOLD_CLASSIC_STATIC = {
"SHP_DEFLECTOR_SHIELD": fo.aggression.aggressive,
"CON_ARCH_PSYCH": fo.aggression.aggressive,
"CON_CONC_CAMP": fo.aggression.aggressive,
"LRN_XENOARCH": fo.aggression.typical,
"LRN_PHYS_BRAIN": fo.aggression.typical,
"LRN_TRANSLING_THT": fo.aggression.typical,
"LRN_PSIONICS": fo.aggression.typical,
"LRN_DISTRIB_THOUGHT": fo.aggression.typical,
"LRN_QUANT_NET": fo.aggression.typical,
"PRO_SINGULAR_GEN": fo.aggression.typical,
"LRN_TRANSCEND": fo.aggression.typical,
}
def may_research_tech_classic(self, tech):
return (
type(self).TECH_LOWER_THRESHOLD_CLASSIC_STATIC.get(tech, fo.aggression.beginner)
<= self.aggression
<= type(self).TECH_UPPER_THRESHOLD_CLASSIC_STATIC.get(tech, fo.aggression.maniacal)
)
def attitude_to_empire(self, other_empire_id, diplomatic_logs):
# TODO: In other traits consider proximity, competitive
# needs, relations with other empires, past history with this
# empire, etc.
# in the meantime, somewhat random
# TODO: Move the diplomatic log portion of this trait back
# into diplomacy where it belongs.
if self.aggression == fo.aggression.maniacal:
return -9
if self.aggression == fo.aggression.beginner:
return 9
log_index = (other_empire_id, fo.empireID())
num_alliance_requests = len(diplomatic_logs.get("alliance_requests", {}).get(log_index, []))
num_peace_requests = len(diplomatic_logs.get("peace_requests", {}).get(log_index, []))
num_war_declarations = len(diplomatic_logs.get("war_declarations", {}).get(log_index, []))
# Too many requests for peace irritate the AI, as do any war declarations
irritation = (
self.aggression
* (2.0 + num_alliance_requests / 5.0 + num_peace_requests / 10.0 + 2.0 * num_war_declarations)
+ 0.5
)
attitude = 10 * random.random() - irritation
return min(10, max(-10, attitude))
def warship_adjusted_production_cost_exponent(self): # pylint: disable=no-self-use,unused-argument
# as military ships are grouped up in fleets, their power rating scales quadratic in numbers.
# To account for this, we need to maximize rating/cost_squared not rating/cost as usual.
if self.aggression == fo.aggression.maniacal:
exponent = 2.0
elif self.aggression == fo.aggression.aggressive:
exponent = 1.5
else:
exponent = 1.0
return exponent
def secondary_valuation_factor_for_invasion_targets(self): # pylint: disable=no-self-use,unused-argument
"""Return a value in range [0.0 : 1.0], used in colonization scoring calculations where subscores for a primary
planet depend on traits of secondary planets, for what portion of the subscore should be assigned if the secondary
planet would need to be acquired via invasion"""
if self.aggression == fo.aggression.maniacal:
factor = 0.8
elif self.aggression == fo.aggression.aggressive:
factor = 0.4
elif self.aggression == fo.aggression.typical:
factor = 0.2
else:
factor = 0.0
return factor
class EmpireIDTrait(Trait):
"""A trait that models empire id influence.
Mostly some modulo 2 effects."""
# The initial implementation was to pull empire.id modulo 2 or 3 optional
# portions of the code into this trait EmpireIDTrait. This was
# merely a refactoring of existing code and is not an example of ideal
# implementation.
# EmpireID selects based on empire.id with is an implementation detail and
# not a "visible" game mechanic. EmpireID is also used to select between
# coefficient options, which look like programmer experiments. EmpireID
# should be removed as a trait.
# TODO: Remove EmpireIDTrait.
# Empire id is a game mechanic. It is not something that a player
# can describe, "Look the 'Continuum' is behaving like a 1 modulo 2 character."
def __init__(self, empire_id, aggression):
debug("EmpireIDTrait initialized.")
self.id = empire_id
self.aggression = aggression # TODO remove when old research style get_research_index is removed
@property
def key(self):
return self.id % 2
def _modulo_two_choice(self, alternatives):
if not alternatives:
return None
if len(alternatives) == 1:
return alternatives[0]
return alternatives[self.id % 2]
def preferred_research_cutoff(self, alternatives):
return self._modulo_two_choice(alternatives)
def preferred_colonization_portion(self, alternatives):
return self._modulo_two_choice(alternatives)
def preferred_outpost_portion(self, alternatives):
return self._modulo_two_choice(alternatives)
def preferred_building_ratio(self, alternatives):
if not alternatives:
return None
return alternatives[self.id % 3] if len(alternatives) >= 3 else alternatives[self.id % len(alternatives)]
def preferred_discount_multiplier(self, alternatives):
return self._modulo_two_choice(alternatives)
def may_travel_beyond_supply(self, distance):
return (
distance < 2
or distance <= 2
and self.aggression >= fo.aggression.typical
or self.aggression >= fo.aggression.aggressive
)
# TODO remove this function as soon as old style research is gone
# It defeats the orthogonality goal of character components for little gain
def get_research_index(self):
research_index = self.id % 2
if self.aggression >= fo.aggression.aggressive:
research_index = 2 + (self.id % 3) # so indices [2,3,4]
elif self.aggression >= fo.aggression.typical:
research_index += 1
return research_index
class Character(Trait):
"""
A collection of traits.
For each query that Trait supports a Character queries
all of its own traits to determine if an action is permissible or prefered.
"""
# See Note below: Algorithmic Completion of Character class.
def __init__(self, traits):
self.traits = traits
if not all([isinstance(x, Trait) for x in traits]):
raise TypeError("All traits must be sub-classes of Trait")
def get_trait(self, type_of_trait):
"""Return the requested trait or None"""
trait = [x for x in self.traits if isinstance(x, type_of_trait)]
return trait[0] if trait else None
# Note: Algorithmic Completion of Character class.
# Complete the Character class by adding all of the combiners to combine the outputs of the
# individual traits. Character tries to combine results in the way most limiting to the AI
def _make_single_function_combiner(funcnamei, f_combo):
"""Make a combiner that collects the results of funcname from each trait
and applies f_combo to the results"""
def func(self, *args, **kwargs):
"""Apply funcnamei to each trait and combine them with ''f_combo''"""
return f_combo([getattr(x, funcnamei)(*args, **kwargs) for x in self.traits])
return func
def _maxmin_not_none(f_combo):
"""Make a combiner that collects not None items and applies min or max"""
def func(llin):
ll = [x for x in llin if x is not None]
if not ll:
return 0
return f_combo(ll)
return func
# Create combiners for traits that all must be true
for funcname in [
"may_explore_system",
"may_surge_industry",
"may_maximize_research",
"may_invade",
"may-invade_with_bases",
"may_build_building",
"may_produce_troops",
"may_research_heavily",
"may_use_growth_focus",
"may_travel_beyond_supply",
"may_research_xeno_genetics_variances",
"prefer_research_defensive",
"prefer_research_low_aggression",
"may_research_tech",
"may_research_tech_classic",
]:
setattr(Character, funcname, _make_single_function_combiner(funcname, all))
# Create combiners for traits that take min result
for funcname in [
"max_number_colonies",
"invasion_priority_scaling",
"military_priority_scaling",
"max_defense_portion",
]:
setattr(Character, funcname, _make_single_function_combiner(funcname, _maxmin_not_none(min)))
# Create combiners for traits that take max result
for funcname in ["target_number_of_orbitals", "military_safety_factor", "get_research_index"]:
setattr(Character, funcname, _make_single_function_combiner(funcname, _maxmin_not_none(max)))
# Create combiners for traits that take any result
for funcname in ["check_orbital_production"]:
setattr(Character, funcname, _make_single_function_combiner(funcname, any))
# Create combiners for traits that averages all not None results
def average_not_none(llin):
ll = [x for x in llin if x is not None]
if not ll:
return 0
return sum(ll) / float(len(ll))
for funcname in ["attitude_to_empire", "secondary_valuation_factor_for_invasion_targets"]:
setattr(Character, funcname, _make_single_function_combiner(funcname, average_not_none))
# Create combiners for traits that use the geometic mean of all not None results
def geometric_mean_not_none(llin):
ll_not_none = [x for x in llin if x is not None]
ll = [x for x in ll_not_none if x > 0]
if len(ll_not_none) != len(ll):
warning("Calculating the geometric mean of %s contains negative numbers which will be ignored." % ll_not_none)
if not ll:
return 1
return math.exp(sum(map(math.log, ll)) / float(len(ll)))
for funcname in ["warship_adjusted_production_cost_exponent"]:
setattr(Character, funcname, _make_single_function_combiner(funcname, geometric_mean_not_none))
def _make_most_preferred_combiner(funcnamei):
"""Make a combiner that runs the preference function for each trait and
returns the result most preferred by all the traits."""
def _most_preferred(self, alternatives):
"""Applies funcnamei from each trait to the alternatives and return the most preferred."""
prefs = [y for y in [getattr(x, funcnamei)(alternatives) for x in self.traits] if y is not None]
if not prefs:
return None
if len(prefs) == 1:
return prefs[0]
return Counter.most_common(Counter(prefs), 1)[0][0]
return _most_preferred
# Create combiners for traits deal with preference
for funcname in [
"preferred_research_cutoff",
"preferred_colonization_portion",
"preferred_outpost_portion",
"preferred_building_ratio",
"preferred_discount_multiplier",
]:
setattr(Character, funcname, _make_most_preferred_combiner(funcname))
def create_character(aggression=fo.aggression.maniacal, empire_id=0):
"""Create a character."""
# TODO add the mandatory (Difficulty) and optional/random (everything
# else) interface to Character creation.
# Check the optionsDB for the trait bypass values and create
# the character.
NO_VALUE = -1
bypassed_aggression = get_trait_bypass_value("aggression", int(aggression), NO_VALUE)
bypassed_empire_id = get_trait_bypass_value("empire-id", empire_id, NO_VALUE)
return Character([Aggression(bypassed_aggression), EmpireIDTrait(bypassed_empire_id, bypassed_aggression)])
def get_trait_bypass_value(name: str, default: int, sentinel: int) -> int:
"""Fetch a bypassed trait value or return the default from OptionsDB.
In OptionsDB a section ai.config.trait can contain default trait
values for all of the AIs or specific AIs which will override the
default value passed into this function.
If there is an XML element in config.xml/persistent_config.xml
ai.trait.<name of trait here>.force.enabled
with a non zero value
,then the value of ai.trait.<name of trait here>.ai_<AI ID number here>
will be checked. If it is not the sentinel value (typically -1) the it
will be returned as the trait's value.
Otherwise the value of
ai.trait.<name of trait here>.default
is checked. Again if it is not the sentinel value it will ovverride
the returned value for trait.
If trait is not overriden by one of the above values, then the
default is used.
Here is an example section providing override values aggression and the
empire-id trait.
<ai>
<trait>
<aggression>
<force>
<enabled>1</enabled>
</force>
<default>4</default>
<ai_0>5</ai_0>
<ai_1>4</ai_1>
<ai_2>3</ai_2>
<ai_3>2</ai_3>
<ai_4>1</ai_4>
<ai_5>0</ai_5>
</aggression>
<empire-id>
<force>
<enabled>1</enabled>
</force>
<ai_0>5</ai_0>
<ai_1>4</ai_1>
<ai_2>3</ai_2>
<ai_3>2</ai_3>
<ai_4>1</ai_4>
<ai_5>0</ai_5>
</empire-id>
</trait>
</ai>
:param name: Name of the trait.
:param default: Default value of the trait.
:param sentinel: A value indicating no valid value.
:return: The trait
"""
force_option = f"ai.trait.{name.lower()}.force.enabled"
if not fo.getOptionsDBOptionBool(force_option):
return default
per_id_option = f"ai.trait.{name.lower()}.{fo.playerName().lower()}"
all_id_option = f"ai.trait.{name.lower()}.default"
trait = fo.getOptionsDBOptionInt(per_id_option)
if trait is None or trait == sentinel:
trait = fo.getOptionsDBOptionInt(all_id_option)
if trait is None or trait == sentinel:
trait = default
else:
debug("%s trait bypassed and set to %s for %s", name, repr(trait), fo.playerName())
return trait
|