1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
|
import freeorion as fo
import sys
from collections import defaultdict
from math import acos, ceil, cos, floor, pi, sin, sqrt
from random import gauss, randint, random, uniform
import universe_tables
import util
class AdjacencyGrid:
def __init__(self, universe_width):
"""
:param float universe_width:
"""
assert universe_tables.MIN_SYSTEM_SEPARATION < universe_tables.MAX_STARLANE_LENGTH
self.min_dist = universe_tables.MIN_SYSTEM_SEPARATION
self.max_dist = universe_tables.MAX_STARLANE_LENGTH
self.cell_size = min(max(universe_width / 50, self.min_dist), self.max_dist / sqrt(2))
self.width = int(universe_width / self.cell_size) + 1
self.grid = defaultdict(set)
print(f"Adjacency Grid: width {self.width}, cell size {self.cell_size}")
def cell(self, pos):
"""Returns cell index."""
return int(pos[0] / self.cell_size), int(pos[1] / self.cell_size)
def insert_pos(self, pos):
"""Inserts pos."""
self.grid[self.cell(pos)].add(pos)
def remove_pos(self, pos):
"""Removes pos."""
self.grid[self.cell(pos)].discard(pos)
def _square_indices_containing_cell(self, cell, radius):
"""Return a square of indices containing cell."""
cell_x, cell_y = cell
upper_left_x = max(0, cell_x - radius)
upper_left_y = max(0, cell_y - radius)
lower_right_x = min(self.width - 1, cell_x + radius)
lower_right_y = min(self.width - 1, cell_y + radius)
return [(x, y) for x in range(upper_left_x, lower_right_x + 1) for y in range(upper_left_y, lower_right_y + 1)]
def _generate_rings_around_point(self, pos, max_radius=None):
"""Yields successive rings of indices containing cell."""
cell = self.cell(pos)
i_radius = 0
i_radius_max = ceil(max_radius / self.cell_size) if max_radius else (self.width + 1)
outer = set()
ring = {1}
while ring and i_radius <= i_radius_max:
inner = outer
outer = set(self._square_indices_containing_cell(cell, i_radius))
ring = outer - inner
yield ring
i_radius += 1
def neighbors(self, p):
"""Return all neighbors within max_dist."""
_neighbors = []
i_radius_close_enough = floor(self.max_dist / self.cell_size)
for i, ring in enumerate(self._generate_rings_around_point(p, self.max_dist)):
if i <= i_radius_close_enough:
_neighbors += [pos for cell in ring for pos in self.grid[cell]]
else:
_neighbors += [
pos for cell in ring for pos in self.grid[cell] if util.distance(pos, p) <= self.max_dist
]
return _neighbors
def nearest_neighbor(self, p):
"""Return nearest neighbor at any distance."""
for ring in self._generate_rings_around_point(p):
candidates = [pos for cell in ring for pos in self.grid[cell]]
if candidates:
(_, pt) = min((util.distance(pos, p), pos) for pos in candidates)
return pt
return None
def too_close_to_other_positions(self, pos):
"""
Checks if the specified position is too close to the positions stored in the grid
"""
pos_cell = self.cell(pos)
return any(
util.distance(p2, pos) < self.min_dist
for p2_cell in self._square_indices_containing_cell(pos_cell, 1)
for p2 in self.grid[p2_cell]
)
class DSet:
"""
A set of pos that is disjoint (not connected) to other sets.
If the set is of one item then it has no parent. parent equals None.
Otherwise the set points to the root/representative item of the set via parent.
A private child class of DisjointSets to store the parent and rank of a disjoint set object
"""
def __init__(self, pos):
self.pos = pos
# stores None or the parent
self.parent = None
# starts at 0, never decreases and only increases
# when this object is the parent and two equal rank sets are merged
self.rank = 0
def bind_parent(self, parent):
"""Bind to parent."""
assert self is not parent
self.parent = parent
def inc_rank(self):
"""Increment rank."""
self.rank += 1
class DisjointSets:
"""
A set of disjoint sets.
It supports the operations of:
add(pos) -- Creates a new single item set containing pos if it isn't already a set. O(1)
link(p1, p2) -- Links two sets containing p1 and p2 together.
This will add(p1) and add(p2) if necessary. O(1)
root(pos) -- Gets the root/representative object for the set.
Creates a new set with pos if not already a set. O(1)
complete_sets -- Returns a list of list of all sets. O(n)
See https://en.wikipedia.org/wiki/Disjoint-set_data_structure
"""
def __init__(self):
self.dsets = {}
def add(self, pos):
"""Creates a new single item set containing pos if it isn't already a set. O(1)"""
if pos not in self.dsets:
self.dsets[pos] = DSet(pos)
def link(self, p1, p2):
"""Creates a link between the sets containing p1 and p2"""
root1 = self.root(p1)
if p1 == p2:
# print " self link"
return
root2 = self.root(p2)
if root1 == root2:
# print " same discrete set link"
return
ds1 = self.dsets[root1]
ds2 = self.dsets[root2]
assert not ds1.parent and not ds2.parent
# Always attach the "smaller" lower rank as the child of the "larger" higher rank tree
if ds1.rank > ds2.rank:
# print " left link"
ds2.bind_parent(ds1)
else:
# print " right link"
ds1.bind_parent(ds2)
if ds1.rank == ds2.rank:
# print " even link"
ds2.inc_rank()
def root(self, pos):
"""
Returns the key position of the cluster containing pos
Adds pos if absent
"""
root = self._has_root(pos)
if root:
return root[0]
self.add(pos)
return pos
def _has_root(self, pos):
"""
Check if pos is the root of a cluster otherwise shorten
the tree while tranversing it and return the root
"""
# traverse tree and fetch parents for compression
def parents(p1, children):
# print "pp p1 ", p1.pos, " children a ", children
if p1.parent:
# print "pp deeper ", p1.pos, " chlidren b ", children
children.append(p1)
return parents(p1.parent, children)
else:
# print "pp done p1 ", p1.pos, " children c ", children
return (p1, children)
if pos not in self.dsets:
return []
(root, children) = parents(self.dsets[pos], [])
# squash the chain of children
for child in children:
child.bind_parent(root)
return [root.pos]
def complete_sets(self):
"""returns a list of list of all sets O(n)."""
ret = defaultdict(list)
for pos in self.dsets.keys():
ret[self.root(pos)].append(pos)
return list(ret.values())
class Clusterer:
"""
Computes all clusters of positions separated by more than MAX_STARLANE_LENGTH
This creates a disjoint set of all of the positions
Adds all of the seperations less than MAX_STARLANE_LENGTH
Then returns the clusters of stars when requested
"""
def __init__(self, positions, adjacency_grid):
self.adjacency_grid = adjacency_grid
self.dsets = DisjointSets()
for pos in positions:
self._add(pos)
self.clusters = set()
for cluster in self.dsets.complete_sets():
# Decorate each cluster with its length to speed sorting
self.clusters.add((len(cluster), frozenset(cluster)))
def __len__(self):
return len(self.clusters)
def _add(self, pos):
"""Adds pos."""
for neighbor in self.adjacency_grid.neighbors(pos):
# print "Clusterer adding ", pos, " and ", neighbor
self.dsets.link(pos, neighbor)
def smallest_isolated_cluster(self):
"""
Return None if all of the positions are in one cluster
or the smallest cluster
"""
# Sort (min) and return the undecorated cluster.
return None if len(self.clusters) < 2 else min(self.clusters)[1]
def stitch_clusters(self, p1, p2, stitches):
"""
Stitch the clusters containing ''p1'' and ''p2''
together with the positions in ''stitches''
This assumes that the stitching is correctly formed.
''p1'' and ''p2'' are the closest positions between
the clusters and the positions in ''stitches'' are only
between ''p1'' and ''p2''
After stitch_clusters there will be one fewer clusters in
the clusterer, unless there were fewer than two clusters
to begin with.
If ''p1'' or ''p2'' are not in clusters then stitch_clusters
just stitches two random clusters together. This preserves
the invariant that stitch_clusters always reduces the number
of clusters.
"""
len_dset1 = None
len_dset2 = None
for len_dset in self.clusters:
if p1 in len_dset[1]:
len_dset1 = len_dset
if p2 in len_dset[1]:
len_dset2 = len_dset
if not len_dset1 or not len_dset2:
util.report_error("p1 and p2 must be points in disjoint sets of positions")
if len(self.clusters) < 2:
return
len_dset1, len_dset2 = list(self.clusters)[0:2]
self.clusters.remove(len_dset1)
self.clusters.remove(len_dset2)
# Decorate the new cluster with its length to speed sorting
new_set = len_dset1[1].union(len_dset2[1]).union(frozenset(stitches))
self.clusters.add((len(new_set), new_set))
def stitching_positions(p1, p2):
"""
Returns a list of positions between p1 and p2 between MIN_SYSTEM_SEPARATION and MAX_STARLANE_LENGTH apart
"""
if 2 * universe_tables.MIN_SYSTEM_SEPARATION >= universe_tables.MAX_STARLANE_LENGTH:
util.report_error(
"MAX_STARLANE_LENGTH must be twice MIN_SYSTEM_SEPARATION to "
"allow extra positions to be added to enforce MAX_STARLANE_LENGTH"
)
return []
max_dist = universe_tables.MAX_STARLANE_LENGTH
min_dist = universe_tables.MIN_SYSTEM_SEPARATION
p1_p2_dist = util.distance(p1, p2)
if p1_p2_dist < max_dist:
return []
# Pick a random point in an 2:1 ratio ellipse and then rotate and slide it in between p1 and p2
p1_p2_theta = acos((p2[0] - p1[0]) / p1_p2_dist)
p1_p2_scale = (p1_p2_dist - 2 * min_dist) / 2
p1_p2_translation = ((p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2)
radius_0space = uniform(0.0, 1.0)
angle_0space = uniform(0.0, 2.0 * pi)
rotated_point = (
radius_0space * p1_p2_scale * cos(angle_0space + p1_p2_theta),
radius_0space * p1_p2_scale * sin(angle_0space + p1_p2_theta),
)
p3 = (rotated_point[0] + p1_p2_translation[0], rotated_point[1] + p1_p2_translation[1])
return [p3] + stitching_positions(p1, p3) + stitching_positions(p2, p3)
def enforce_max_distance(positions, adjacency_grid):
"""
Adds extra positions between groups of positions to guarantee
that no groups of positions are separated from all other groups
of positions by more than universe_tables.MAX_STARLANE_LENGTH
Find all groups of positions, where every member is within
MAX_STARLANE_LENGTH of at least one other member of the group,
but all members of the group are more than MAX_STARLANE_LENGTH
from all positions in other groups.
For each group:
- Remove it from the adjacency grid and find its nearest neighboring position.
- Add positions between the nearest neighbor and the group to
ensure every position has at least one neighbor within
MAX_STARLANE_LENGTH.
"""
# Find all clusters
clusterer = Clusterer(positions, adjacency_grid)
if len(clusterer) == 1:
print("All systems positioned in a single connected cluster")
else:
print(f"{len(clusterer)} clusters separated by more than the MAX_STARLANE_LENGTH." " Starting to fill gaps.")
while len(clusterer) > 1:
smallest_cluster = clusterer.smallest_isolated_cluster()
print("Searching for nearest neighbor position to a cluster " f"with {len(smallest_cluster)} positions.")
for pos in smallest_cluster:
adjacency_grid.remove_pos(pos)
# Find nearest neighbour
(_, p1, p2) = min(
[
(util.distance(pos, nn), pos, nn)
for pos in smallest_cluster
for nn in [adjacency_grid.nearest_neighbor(pos)]
if nn
]
)
for pos in smallest_cluster:
adjacency_grid.insert_pos(pos)
# Add extra positions
extra_positions = stitching_positions(p1, p2)
for i_extra, p3 in enumerate(extra_positions):
print(
f"Adding {i_extra + 1} of {len(extra_positions)} extra positions at {p3} to enforce "
f"max spacing between {p1} and {p2}."
)
adjacency_grid.insert_pos(p3)
positions.append(p3)
clusterer.stitch_clusters(p1, p2, extra_positions)
if len(clusterer) == 1:
print("All systems now positioned in a single connected cluster")
else:
print(f"{len(clusterer)} clusters separated by more the MAX_STARLANE_LENGTH. " "Continuing to fill gaps.")
def calc_universe_width(shape, size):
"""
Calculates typical universe width based on galaxy shape and number of star systems.
A 150 star universe should be 1000 units across.
"""
width = (1000.0 / sqrt(150.0)) * sqrt(float(size))
if shape in [fo.galaxyShape.elliptical, fo.galaxyShape.irregular]:
width *= 1.4
elif shape == fo.galaxyShape.disc:
width *= 1.2
return width
def spiral_galaxy_calc_positions(positions, adjacency_grid, arms, size, width):
"""
Calculate positions for the spiral galaxy shapes.
"""
arm_offset = uniform(0.0, 2.0 * pi)
arm_angle = (2.0 * pi) / float(arms)
arm_spread = (0.3 * pi) / float(arms)
arm_length = 1.5 * pi
center = 0.25
for i in range(size):
attempts = 100
while attempts > 0:
radius = random()
if radius < center:
angle = uniform(0.0, 2.0 * pi)
x = radius * cos(arm_offset + angle)
y = radius * sin(arm_offset + angle)
else:
arm = randint(0, arms - 1) * arm_angle
angle = gauss(0.0, arm_spread)
x = radius * cos(arm_offset + arm + angle + radius * arm_length)
y = radius * sin(arm_offset + arm + angle + radius * arm_length)
x = (x + 1) * width / 2.0
y = (y + 1) * width / 2.0
if (x < 0.0) or (width <= x) or (y < 0.0) or (width <= y):
continue
# see if new star is too close to any existing star.
# if so, we try again or give up
if adjacency_grid.too_close_to_other_positions((x, y)):
attempts -= 1
continue
# add the new star location
pos = (x, y)
adjacency_grid.insert_pos(pos)
positions.append(pos)
break
if not attempts:
print(
f"Spiral galaxy shape: giving up on placing star {i}, can't "
"find position sufficiently far from other systems."
)
def elliptical_galaxy_calc_positions(positions, adjacency_grid, size, width):
"""
Calculate positions for the elliptical galaxy shape.
"""
ellipse_width_vs_height = uniform(0.4, 0.6)
rotation = uniform(0.0, pi)
rotation_sin = sin(rotation)
rotation_cos = cos(rotation)
gap_constant = 0.95
gap_size = 1.0 - gap_constant * gap_constant * gap_constant
for i in range(size):
attempts = 100
while attempts > 0:
radius = uniform(0.0, gap_constant)
# adjust for bigger density near center and create gap
radius = radius * radius * radius + gap_size
angle = uniform(0.0, 2.0 * pi)
# rotate for individual angle and apply elliptical shape
x1 = radius * cos(angle)
y1 = radius * sin(angle) * ellipse_width_vs_height
# rotate for ellipse angle
x = x1 * rotation_cos - y1 * rotation_sin
y = x1 * rotation_sin + y1 * rotation_cos
# move from [-1.0, 1.0] universe coordinates
x = (x + 1.0) * width / 2.0
y = (y + 1.0) * width / 2.0
# discard stars that are outside boundaries (due to possible rounding errors)
if (x < 0) or (x >= width) or (y < 0) or (y >= width):
attempts -= 1
continue
# see if new star is too close to any existing star; if so, we try again
if adjacency_grid.too_close_to_other_positions((x, y)):
attempts -= 1
continue
# add the new star location
pos = (x, y)
adjacency_grid.insert_pos(pos)
positions.append(pos)
break
if not attempts:
print(
f"Elliptical galaxy shape: giving up on placing star {i}, "
"can't find position sufficiently far from other systems"
)
def disc_galaxy_calc_positions(positions, adjacency_grid, size, width):
"""
Calculate positions for the disc galaxy shape.
"""
center_x, center_y = width / 2.0, width / 2.0
for i in range(size):
attempts = 100
while attempts > 0:
radius = uniform(0.0, width / 2.0)
angle = uniform(0.0, 2.0 * pi)
x = center_x + radius * cos(angle)
y = center_y + radius * sin(angle)
if (x < 0) or (width <= x) or (y < 0) or (width <= y):
attempts -= 1
continue
# see if new star is too close to any existing star; if so, we try again
if adjacency_grid.too_close_to_other_positions((x, y)):
attempts -= 1
continue
# add the new star location
pos = (x, y)
adjacency_grid.insert_pos(pos)
positions.append(pos)
break
if not attempts:
print(
f"Disc galaxy shape: giving up on placing star {i}, can't find"
" position sufficiently far from other systems"
)
def cluster_galaxy_calc_positions( # noqa: C901
positions: list[tuple[int, int]], adjacency_grid: AdjacencyGrid, size: int, width: float
):
"""
Calculate positions for the cluster galaxy shape and add them to positions.
"""
if size < 1:
print("Cluster galaxy requested for less than 1 star", file=sys.stderr)
return
if size == 1:
pos = (width / 2.0, width / 2.0)
positions.append(pos)
return
# Typically a galaxy with 100 systems should have ~5 clusters
avg_clusters = max(2, round(size / 20))
# Add a bit of random variation (+/- 20%)
clusters = max(2, randint(round((avg_clusters * 8) / 10), round((avg_clusters * 12) / 10)))
# probability of systems which don't belong to a cluster
system_noise = 0.15
ellipse_width_vs_height = uniform(0.2, 0.5)
# a list of tuples of tuples: first tuple holds cluster position,
# second tuple stores help values for cluster rotation (sin,cos)
clusters_position = []
for i in range(clusters):
attempts = 100
while attempts > 0:
# prevent cluster position near borders (and on border)
x = ((random() * 2.0 - 1.0) / (clusters + 1.0)) * clusters
y = ((random() * 2.0 - 1.0) / (clusters + 1.0)) * clusters
# ensure all clusters have a min separation to each other (search isn't optimized, not worth the effort)
if all(
((cp[0][0] - x) * (cp[0][0] - x) + (cp[0][1] - y) * (cp[0][1] - y)) > (2.0 / clusters)
for cp in clusters_position
):
break
attempts -= 1
rotation = uniform(0.0, pi)
clusters_position.append(((x, y), (sin(rotation), cos(rotation))))
for i in range(size):
attempts = 100
while attempts > 0:
if random() < system_noise:
x = random() * 2.0 - 1.0
y = random() * 2.0 - 1.0
else:
cluster = clusters_position[i % len(clusters_position)]
radius = random()
angle = uniform(0.0, 2.0 * pi)
x1 = radius * cos(angle)
y1 = radius * sin(angle) * ellipse_width_vs_height
x = x1 * cluster[1][1] + y1 * cluster[1][0]
y = (-x1) * cluster[1][0] + y1 * cluster[1][1]
x = x / sqrt(float(clusters)) + cluster[0][0]
y = y / sqrt(float(clusters)) + cluster[0][1]
x = (x + 1) * width / 2.0
y = (y + 1) * width / 2.0
if (x < 0) or (width <= x) or (y < 0) or (width <= y):
attempts -= 1
continue
# see if new star is too close to any existing star; if so, we try again
if adjacency_grid.too_close_to_other_positions((x, y)):
attempts -= 1
continue
# add the new star location
pos = (x, y)
adjacency_grid.insert_pos(pos)
positions.append(pos)
break
if not attempts:
print(
f"Cluster galaxy shape: giving up on placing star {i}, can't "
"find position sufficiently far from other systems"
)
def ring_galaxy_calc_positions(positions, adjacency_grid, size, width):
"""
Calculate positions for the ring galaxy shape.
"""
ring_width = width / 4.0
ring_radius = (width - ring_width) / 2.0
for i in range(size):
attempts = 100
while attempts > 0:
theta = uniform(0.0, 2.0 * pi)
radius = gauss(ring_radius, ring_width / 3.0)
x = width / 2.0 + radius * cos(theta)
y = width / 2.0 + radius * sin(theta)
if (x < 0) or (width <= x) or (y < 0) or (width <= y):
attempts -= 1
continue
# see if new star is too close to any existing star; if so, we try again
if adjacency_grid.too_close_to_other_positions((x, y)):
attempts -= 1
continue
# add the new star location
pos = (x, y)
adjacency_grid.insert_pos(pos)
positions.append(pos)
break
if not attempts:
print(
f"Ring galaxy shape: giving up on placing star {i}, can't"
" find position sufficiently far from other systems"
)
def box_galaxy_calc_positions(positions, adjacency_grid, size, width):
"""
Calculate positions for the box galaxy shape.
:param float width:
"""
for i in range(size):
attempts = 100
while attempts > 0:
x = width * random()
y = width * random()
if (x < 0) or (width <= x) or (y < 0) or (width <= y):
attempts -= 1
continue
# see if new star is too close to any existing star; if so, we try again
if adjacency_grid.too_close_to_other_positions((x, y)):
attempts -= 1
continue
# add the new star location
pos = (x, y)
adjacency_grid.insert_pos(pos)
positions.append(pos)
break
if not attempts:
print(
f"Box galaxy shape: giving up on placing star {i}, can't find"
" position sufficiently far from other systems"
)
def irregular_galaxy_calc_positions(positions, adjacency_grid, size, width):
"""
Calculate positions for the irregular galaxy shape.
"""
max_delta = max(min(float(universe_tables.MAX_STARLANE_LENGTH), width / 10.0), adjacency_grid.min_dist * 2.0)
print(f"Irregular galaxy shape: max delta distance = {max_delta}")
origin_x, origin_y = width / 2.0, width / 2.0
prev_x, prev_y = origin_x, origin_y
reset_to_origin = 0
for _ in range(size):
attempts = 100
found = False
while (attempts > 0) and not found:
attempts -= 1
x = prev_x + uniform(-max_delta, max_delta)
y = prev_y + uniform(-max_delta, max_delta)
if util.distance((x, y), (origin_x, origin_y)) > width * 0.45:
prev_x, prev_y = origin_x, origin_y
reset_to_origin += 1
continue
found = not adjacency_grid.too_close_to_other_positions((x, y))
if attempts % 10:
prev_x, prev_y = x, y
if found:
pos = (x, y)
adjacency_grid.insert_pos(pos)
positions.append(pos)
prev_x, prev_y = x, y
print(f"Reset to origin {reset_to_origin} times")
def recalc_universe_width(positions):
"""
Recalculates the universe width. This is done by shifting all positions by a delta so too much "extra space"
beyond the uppermost, lowermost, leftmost and rightmost positions is cropped, and adjust the universe width
accordingly.
Returns the new universe width and the recalculated positions.
"""
print("Recalculating universe width...")
# first, get the uppermost, lowermost, leftmost and rightmost positions
# (these are those with their x or y coordinate closest to or farthest away from the x or y axis)
min_x = min(positions, key=lambda p: p[0])[0]
min_y = min(positions, key=lambda p: p[1])[1]
max_x = max(positions, key=lambda p: p[0])[0]
max_y = max(positions, key=lambda p: p[1])[1]
print(f"...the leftmost system position is at x coordinate {min_x}")
print(f"...the uppermost system position is at y coordinate {min_y}")
print(f"...the rightmost system position is at x coordinate {max_x}")
print(f"...the lowermost system position is at y coordinate {max_y}")
# calculate the actual universe width by determining the width and height of an rectangle that encompasses all
# positions, and take the greater of the two as the new actual width for the universe
# also add a constant value to the width so we have some small space around
width = max_x - min_x
height = max_y - min_y
actual_width = max(width, height) + 20.0
print(f"...recalculated universe width: {actual_width}")
# shift all positions so the entire map is centered in a quadratic box of the width we just calculated
# this box defines the extends of our universe
delta_x = ((actual_width - width) / 2) - min_x
delta_y = ((actual_width - height) / 2) - min_y
print(f"...shifting all system positions by {delta_x}/{delta_y}")
new_positions = [(p[0] + delta_x, p[1] + delta_y) for p in positions]
print(f"...the leftmost system position is now at x coordinate {min(new_positions, key=lambda p: p[0])[0]}")
print(f"...the uppermost system position is now at y coordinate {min(new_positions, key=lambda p: p[1])[1]}")
print(f"...the rightmost system position is now at x coordinate {max(new_positions, key=lambda p: p[0])[0]}")
print(f"...the lowermost system position is now at y coordinate {max(new_positions, key=lambda p: p[1])[1]}")
return actual_width, new_positions
def calc_star_system_positions(gsd):
"""
Calculates list of positions (x, y) for a given galaxy shape,
number of systems and width
Uses universe generator helper functions provided by the API
"""
# calculate typical width for universe based on number of systems
width = calc_universe_width(gsd.shape, gsd.size)
print(f"Set universe width to {width}")
fo.set_universe_width(width)
positions = []
adjacency_grid = AdjacencyGrid(width)
print(f"Creating {gsd.shape} galaxy shape")
if gsd.shape == fo.galaxyShape.spiral2:
spiral_galaxy_calc_positions(positions, adjacency_grid, 2, gsd.size, width)
elif gsd.shape == fo.galaxyShape.spiral3:
spiral_galaxy_calc_positions(positions, adjacency_grid, 3, gsd.size, width)
elif gsd.shape == fo.galaxyShape.spiral4:
spiral_galaxy_calc_positions(positions, adjacency_grid, 4, gsd.size, width)
elif gsd.shape == fo.galaxyShape.elliptical:
elliptical_galaxy_calc_positions(positions, adjacency_grid, gsd.size, width)
elif gsd.shape == fo.galaxyShape.disc:
disc_galaxy_calc_positions(positions, adjacency_grid, gsd.size, width)
elif gsd.shape == fo.galaxyShape.cluster:
cluster_galaxy_calc_positions(positions, adjacency_grid, gsd.size, width)
elif gsd.shape == fo.galaxyShape.ring:
ring_galaxy_calc_positions(positions, adjacency_grid, gsd.size, width)
elif gsd.shape == fo.galaxyShape.irregular:
irregular_galaxy_calc_positions(positions, adjacency_grid, gsd.size, width)
# Check if any positions have been calculated...
if not positions:
# ...if not, fall back on box shape
box_galaxy_calc_positions(positions, adjacency_grid, gsd.size, width)
enforce_max_distance(positions, adjacency_grid)
# to avoid having too much "extra space" around the system positions of our galaxy map, recalculate the universe
# width and shift all positions accordingly
width, positions = recalc_universe_width(positions)
print(f"Set universe width to {width}")
fo.set_universe_width(width)
return positions
|