File: prim_colors_opt.c

package info (click to toggle)
freerdp 1.1.0~git20140921.1.440916e%2Bdfsg1-13%2Bdeb9u3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 16,976 kB
  • sloc: ansic: 166,673; cs: 253; perl: 231; makefile: 125; xml: 89; sh: 63; cpp: 46; python: 31
file content (562 lines) | stat: -rw-r--r-- 18,588 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/* FreeRDP: A Remote Desktop Protocol Client
 * Optimized Color conversion operations.
 * vi:ts=4 sw=4:
 *
 * Copyright 2011 Stephen Erisman
 * Copyright 2011 Norbert Federa <nfedera@thinstuff.com>
 * Copyright 2011 Martin Fleisz <mfleisz@thinstuff.com>
 * (c) Copyright 2012 Hewlett-Packard Development Company, L.P.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License. You may obtain
 * a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <freerdp/types.h>
#include <freerdp/primitives.h>
#include <winpr/sysinfo.h>

#ifdef WITH_SSE2
#include <emmintrin.h>
#elif defined(WITH_NEON)
#include <arm_neon.h>
#endif /* WITH_SSE2 else WITH_NEON */

#include "prim_internal.h"
#include "prim_templates.h"
#include "prim_colors.h"

#ifdef WITH_SSE2

#ifdef __GNUC__
# define GNU_INLINE \
	__attribute__((__gnu_inline__, __always_inline__, __artificial__))
#else
# define GNU_INLINE
#endif

#define CACHE_LINE_BYTES	64

#define _mm_between_epi16(_val, _min, _max) \
	do { _val = _mm_min_epi16(_max, _mm_max_epi16(_val, _min)); } while (0)

#ifdef DO_PREFETCH
/*---------------------------------------------------------------------------*/
static inline void GNU_INLINE _mm_prefetch_buffer(
	char * buffer, 
	int num_bytes)
{
	__m128i * buf = (__m128i*) buffer;
	unsigned int i;
	for (i = 0; i < (num_bytes / sizeof(__m128i)); 
		i+=(CACHE_LINE_BYTES / sizeof(__m128i)))
	{
		_mm_prefetch((char*)(&buf[i]), _MM_HINT_NTA);
	}
}
#endif /* DO_PREFETCH */

/*---------------------------------------------------------------------------*/
PRIMITIVES_HIDDEN pstatus_t sse2_yCbCrToRGB_16s16s_P3P3(
	const INT16 *pSrc[3],
	int srcStep,
	INT16 *pDst[3],
	int dstStep,
	const prim_size_t *roi)	/* region of interest */
{
	__m128i zero, max, r_cr, g_cb, g_cr, b_cb, c4096;
	__m128i *y_buf, *cb_buf, *cr_buf, *r_buf, *g_buf, *b_buf;
	int srcbump, dstbump, yp, imax;

	if (((ULONG_PTR) (pSrc[0]) & 0x0f)
			|| ((ULONG_PTR) (pSrc[1]) & 0x0f)
			|| ((ULONG_PTR) (pSrc[2]) & 0x0f)
			|| ((ULONG_PTR) (pDst[0]) & 0x0f)
			|| ((ULONG_PTR) (pDst[1]) & 0x0f)
			|| ((ULONG_PTR) (pDst[2]) & 0x0f)
			|| (roi->width & 0x07)
			|| (srcStep & 127)
			|| (dstStep & 127))
	{
		/* We can't maintain 16-byte alignment. */
		return general_yCbCrToRGB_16s16s_P3P3(pSrc, srcStep,
			pDst, dstStep, roi);
	}

	zero = _mm_setzero_si128();
	max = _mm_set1_epi16(255);

	y_buf  = (__m128i*) (pSrc[0]);
	cb_buf = (__m128i*) (pSrc[1]);
	cr_buf = (__m128i*) (pSrc[2]);
	r_buf  = (__m128i*) (pDst[0]);
	g_buf  = (__m128i*) (pDst[1]);
	b_buf  = (__m128i*) (pDst[2]);

	r_cr = _mm_set1_epi16(22986);	/*  1.403 << 14 */
	g_cb = _mm_set1_epi16(-5636);	/* -0.344 << 14 */
	g_cr = _mm_set1_epi16(-11698);	/* -0.714 << 14 */
	b_cb = _mm_set1_epi16(28999);	/*  1.770 << 14 */
	c4096 = _mm_set1_epi16(4096);
	srcbump = srcStep / sizeof(__m128i);
	dstbump = dstStep / sizeof(__m128i);

#ifdef DO_PREFETCH
	/* Prefetch Y's, Cb's, and Cr's. */
	for (yp=0; yp<roi->height; yp++)
	{
		int i;
		for (i=0; i<roi->width * sizeof(INT16) / sizeof(__m128i);
			i += (CACHE_LINE_BYTES / sizeof(__m128i)))
		{
			_mm_prefetch((char*)(&y_buf[i]),  _MM_HINT_NTA);
			_mm_prefetch((char*)(&cb_buf[i]), _MM_HINT_NTA);
			_mm_prefetch((char*)(&cr_buf[i]), _MM_HINT_NTA);
		}
		y_buf  += srcbump;
		cb_buf += srcbump;
		cr_buf += srcbump;
	}
	y_buf  = (__m128i*) (pSrc[0]);
	cb_buf = (__m128i*) (pSrc[1]);
	cr_buf = (__m128i*) (pSrc[2]);
#endif /* DO_PREFETCH */

	imax = roi->width * sizeof(INT16) / sizeof(__m128i);
	for (yp=0; yp<roi->height; ++yp)
	{
		int i;
		for (i=0; i<imax; i++)
		{
			/* In order to use SSE2 signed 16-bit integer multiplication
			 * we need to convert the floating point factors to signed int
			 * without losing information.
			 * The result of this multiplication is 32 bit and we have two
			 * SSE instructions that return either the hi or lo word.
			 * Thus we will multiply the factors by the highest possible 2^n,
			 * take the upper 16 bits of the signed 32-bit result
			 * (_mm_mulhi_epi16) and correct this result by multiplying
			 * it by 2^(16-n).
			 *
			 * For the given factors in the conversion matrix the best
			 * possible n is 14.
			 *
			 * Example for calculating r:
			 * r = (y>>5) + 128 + (cr*1.403)>>5             // our base formula
			 * r = (y>>5) + 128 + (HIWORD(cr*(1.403<<14)<<2))>>5   // see above
			 * r = (y+4096)>>5 + (HIWORD(cr*22986)<<2)>>5     // simplification
			 * r = ((y+4096)>>2 + HIWORD(cr*22986)) >> 3
			 */

			/* y = (y_r_buf[i] + 4096) >> 2 */
			__m128i y, cb, cr, r, g, b;
			y = _mm_load_si128(y_buf + i);
			y = _mm_add_epi16(y, c4096);
			y = _mm_srai_epi16(y, 2);
			/* cb = cb_g_buf[i]; */
			cb = _mm_load_si128(cb_buf + i);
			/* cr = cr_b_buf[i]; */
			cr = _mm_load_si128(cr_buf + i);

			/* (y + HIWORD(cr*22986)) >> 3 */
			r = _mm_add_epi16(y, _mm_mulhi_epi16(cr, r_cr));
			r = _mm_srai_epi16(r, 3);

			/* r_buf[i] = MINMAX(r, 0, 255); */
			_mm_between_epi16(r, zero, max);
			_mm_store_si128(r_buf + i, r);

			/* (y + HIWORD(cb*-5636) + HIWORD(cr*-11698)) >> 3 */
			g = _mm_add_epi16(y, _mm_mulhi_epi16(cb, g_cb));
			g = _mm_add_epi16(g, _mm_mulhi_epi16(cr, g_cr));
			g = _mm_srai_epi16(g, 3);

			/* g_buf[i] = MINMAX(g, 0, 255); */
			_mm_between_epi16(g, zero, max);
			_mm_store_si128(g_buf + i, g);

			/* (y + HIWORD(cb*28999)) >> 3 */
			b = _mm_add_epi16(y, _mm_mulhi_epi16(cb, b_cb));
			b = _mm_srai_epi16(b, 3);
			/* b_buf[i] = MINMAX(b, 0, 255); */
			_mm_between_epi16(b, zero, max);
			_mm_store_si128(b_buf + i, b);
		}
		y_buf  += srcbump;
		cb_buf += srcbump;
		cr_buf += srcbump;
		r_buf += dstbump;
		g_buf += dstbump;
		b_buf += dstbump;
	}

	return PRIMITIVES_SUCCESS;
}

/*---------------------------------------------------------------------------*/
/* The encodec YCbCr coeffectients are represented as 11.5 fixed-point
 * numbers. See the general code above.
 */
PRIMITIVES_HIDDEN pstatus_t sse2_RGBToYCbCr_16s16s_P3P3(
	const INT16 *pSrc[3],
	int srcStep,
	INT16 *pDst[3],
	int dstStep,
	const prim_size_t *roi)	/* region of interest */
{
	__m128i min, max, y_r, y_g, y_b, cb_r, cb_g, cb_b, cr_r, cr_g, cr_b;
	__m128i *r_buf, *g_buf, *b_buf, *y_buf, *cb_buf, *cr_buf;
	int srcbump, dstbump, yp, imax;

	if (((ULONG_PTR) (pSrc[0]) & 0x0f)
			|| ((ULONG_PTR) (pSrc[1]) & 0x0f)
			|| ((ULONG_PTR) (pSrc[2]) & 0x0f)
			|| ((ULONG_PTR) (pDst[0]) & 0x0f)
			|| ((ULONG_PTR) (pDst[1]) & 0x0f)
			|| ((ULONG_PTR) (pDst[2]) & 0x0f)
			|| (roi->width & 0x07)
			|| (srcStep & 127)
			|| (dstStep & 127))
	{
		/* We can't maintain 16-byte alignment. */
		return general_RGBToYCbCr_16s16s_P3P3(pSrc, srcStep,
			pDst, dstStep, roi);
	}

	min = _mm_set1_epi16(-128 << 5);
	max = _mm_set1_epi16(127 << 5);

	r_buf  = (__m128i*) (pSrc[0]);
	g_buf  = (__m128i*) (pSrc[1]);
	b_buf  = (__m128i*) (pSrc[2]);
	y_buf  = (__m128i*) (pDst[0]);
	cb_buf = (__m128i*) (pDst[1]);
	cr_buf = (__m128i*) (pDst[2]);

	y_r  = _mm_set1_epi16(9798);   /*  0.299000 << 15 */
	y_g  = _mm_set1_epi16(19235);  /*  0.587000 << 15 */
	y_b  = _mm_set1_epi16(3735);   /*  0.114000 << 15 */
	cb_r = _mm_set1_epi16(-5535);  /* -0.168935 << 15 */
	cb_g = _mm_set1_epi16(-10868); /* -0.331665 << 15 */
	cb_b = _mm_set1_epi16(16403);  /*  0.500590 << 15 */
	cr_r = _mm_set1_epi16(16377);  /*  0.499813 << 15 */
	cr_g = _mm_set1_epi16(-13714); /* -0.418531 << 15 */
	cr_b = _mm_set1_epi16(-2663);  /* -0.081282 << 15 */

	srcbump = srcStep / sizeof(__m128i);
	dstbump = dstStep / sizeof(__m128i);

#ifdef DO_PREFETCH
	/* Prefetch RGB's. */
	for (yp=0; yp<roi->height; yp++)
	{
		int i;
		for (i=0; i<roi->width * sizeof(INT16) / sizeof(__m128i);
			i += (CACHE_LINE_BYTES / sizeof(__m128i)))
		{
			_mm_prefetch((char*)(&r_buf[i]), _MM_HINT_NTA);
			_mm_prefetch((char*)(&g_buf[i]), _MM_HINT_NTA);
			_mm_prefetch((char*)(&b_buf[i]), _MM_HINT_NTA);
		}
		r_buf += srcbump;
		g_buf += srcbump;
		b_buf += srcbump;
	}
	r_buf = (__m128i*) (pSrc[0]);
	g_buf = (__m128i*) (pSrc[1]);
	b_buf = (__m128i*) (pSrc[2]);
#endif /* DO_PREFETCH */

	imax = roi->width * sizeof(INT16) / sizeof(__m128i);
	for (yp=0; yp<roi->height; ++yp)
	{
		int i;
		for (i=0; i<imax; i++)
		{
			/* In order to use SSE2 signed 16-bit integer multiplication we
			 * need to convert the floating point factors to signed int
			 * without loosing information.  The result of this multiplication
			 * is 32 bit and using SSE2 we get either the product's hi or lo
			 * word.  Thus we will multiply the factors by the highest
			 * possible 2^n and take the upper 16 bits of the signed 32-bit
			 * result (_mm_mulhi_epi16).  Since the final result needs to
			 * be scaled by << 5 and also in in order to keep the precision
			 * within the upper 16 bits we will also have to scale the RGB
			 * values used in the multiplication by << 5+(16-n).
			 */
			__m128i r, g, b, y, cb, cr;
			r = _mm_load_si128(y_buf+i);
			g = _mm_load_si128(g_buf+i);
			b = _mm_load_si128(b_buf+i);

			/* r<<6; g<<6; b<<6 */
			r = _mm_slli_epi16(r, 6);
			g = _mm_slli_epi16(g, 6);
			b = _mm_slli_epi16(b, 6);

			/* y = HIWORD(r*y_r) + HIWORD(g*y_g) + HIWORD(b*y_b) + min */
			y = _mm_mulhi_epi16(r, y_r);
			y = _mm_add_epi16(y, _mm_mulhi_epi16(g, y_g));
			y = _mm_add_epi16(y, _mm_mulhi_epi16(b, y_b));
			y = _mm_add_epi16(y, min);
			/* y_r_buf[i] = MINMAX(y, 0, (255 << 5)) - (128 << 5); */
			_mm_between_epi16(y, min, max);
			_mm_store_si128(y_buf+i, y);

			/* cb = HIWORD(r*cb_r) + HIWORD(g*cb_g) + HIWORD(b*cb_b) */
			cb = _mm_mulhi_epi16(r, cb_r);
			cb = _mm_add_epi16(cb, _mm_mulhi_epi16(g, cb_g));
			cb = _mm_add_epi16(cb, _mm_mulhi_epi16(b, cb_b));
			/* cb_g_buf[i] = MINMAX(cb, (-128 << 5), (127 << 5)); */
			_mm_between_epi16(cb, min, max);
			_mm_store_si128(cb_buf+i, cb);

			/* cr = HIWORD(r*cr_r) + HIWORD(g*cr_g) + HIWORD(b*cr_b) */
			cr = _mm_mulhi_epi16(r, cr_r);
			cr = _mm_add_epi16(cr, _mm_mulhi_epi16(g, cr_g));
			cr = _mm_add_epi16(cr, _mm_mulhi_epi16(b, cr_b));
			/* cr_b_buf[i] = MINMAX(cr, (-128 << 5), (127 << 5)); */
			_mm_between_epi16(cr, min, max);
			_mm_store_si128(cr_buf+i, cr);
		}
		y_buf  += srcbump;
		cb_buf += srcbump;
		cr_buf += srcbump;
		r_buf += dstbump;
		g_buf += dstbump;
		b_buf += dstbump;
	}

	return PRIMITIVES_SUCCESS;
}

/*---------------------------------------------------------------------------*/
#define LOAD128(_src_) \
	_mm_load_si128((__m128i *) _src_)
#define STORE128(_dst_, _src_) \
	_mm_store_si128((__m128i *) _dst_, _src_)
#define PUNPCKLBW(_dst_, _src_) \
	_dst_ = _mm_unpacklo_epi8(_src_, _dst_)
#define PUNPCKHBW(_dst_, _src_) \
	_dst_ = _mm_unpackhi_epi8(_src_, _dst_)
#define PUNPCKLWD(_dst_, _src_) \
	_dst_ = _mm_unpacklo_epi16(_src_, _dst_)
#define PUNPCKHWD(_dst_, _src_) \
	_dst_ = _mm_unpackhi_epi16(_src_, _dst_)
#define PACKUSWB(_dst_, _src_) \
	_dst_ = _mm_packus_epi16(_dst_, _src_)
#define PREFETCH(_ptr_) \
	_mm_prefetch((const void *) _ptr_, _MM_HINT_T0)
#define XMM_ALL_ONES \
	_mm_set1_epi32(0xFFFFFFFFU)

PRIMITIVES_HIDDEN pstatus_t sse2_RGBToRGB_16s8u_P3AC4R(
	const INT16 *pSrc[3],	/* 16-bit R,G, and B arrays */
	INT32 srcStep,			/* bytes between rows in source data */
	BYTE *pDst,				/* 32-bit interleaved ARGB (ABGR?) data */
	INT32 dstStep,			/* bytes between rows in dest data */
	const prim_size_t *roi)	/* region of interest */
{
	const UINT16 *r = (const UINT16 *) (pSrc[0]);
	const UINT16 *g = (const UINT16 *) (pSrc[1]);
	const UINT16 *b = (const UINT16 *) (pSrc[2]);
	BYTE *out;
	int srcbump, dstbump, y;

	/* Ensure 16-byte alignment on all pointers,
	 * that width is a multiple of 8,
	 * and that the next row will also remain aligned.
	 * Since this is usually used for 64x64 aligned arrays,
	 * these checks should presumably pass.
	 */
	if ((((ULONG_PTR) (pSrc[0]) & 0x0f) != 0)
			|| (((ULONG_PTR) (pSrc[1]) & 0x0f) != 0)
			|| (((ULONG_PTR) (pSrc[2]) & 0x0f) != 0)
			|| (((ULONG_PTR) pDst & 0x0f) != 0)
			|| (roi->width & 0x0f)
			|| (srcStep & 0x0f)
			|| (dstStep & 0x0f))
	{
		return general_RGBToRGB_16s8u_P3AC4R(pSrc, srcStep, pDst, dstStep, roi);
	}

	out = (BYTE *) pDst;
	srcbump = (srcStep - (roi->width * sizeof(UINT16))) / sizeof(UINT16);
	dstbump = (dstStep - (roi->width * sizeof(UINT32)));

	for (y=0; y<roi->height; ++y)
	{
		int width = roi->width;
		do {
			__m128i R0, R1, R2, R3, R4;
			/* The comments below pretend these are 8-byte registers
			 * rather than 16-byte, for readability.
			 */
			R0 = LOAD128(b);  b += 8;		/* R0 = 00B300B200B100B0 */
			R1 = LOAD128(b);  b += 8;		/* R1 = 00B700B600B500B4 */
			PACKUSWB(R0,R1);				/* R0 = B7B6B5B4B3B2B1B0 */
			R1 = LOAD128(g);  g += 8;		/* R1 = 00G300G200G100G0 */
			R2 = LOAD128(g);  g += 8;		/* R2 = 00G700G600G500G4 */
			PACKUSWB(R1,R2);				/* R1 = G7G6G5G4G3G2G1G0 */
			R2 = R1;						/* R2 = G7G6G5G4G3G2G1G0 */
			PUNPCKLBW(R2,R0);				/* R2 = G3B3G2B2G1B1G0B0 */
			PUNPCKHBW(R1,R0);				/* R1 = G7B7G6B7G5B5G4B4 */
			R0 = LOAD128(r);  r += 8;		/* R0 = 00R300R200R100R0 */
			R3 = LOAD128(r);  r += 8;		/* R3 = 00R700R600R500R4 */
			PACKUSWB(R0,R3);				/* R0 = R7R6R5R4R3R2R1R0 */
			R3 = XMM_ALL_ONES;				/* R3 = FFFFFFFFFFFFFFFF */
			R4 = R3;						/* R4 = FFFFFFFFFFFFFFFF */
			PUNPCKLBW(R4,R0);				/* R4 = FFR3FFR2FFR1FFR0 */
			PUNPCKHBW(R3,R0);				/* R3 = FFR7FFR6FFR5FFR4 */
			R0 = R4;						/* R0 = R4               */
			PUNPCKLWD(R0,R2);				/* R0 = FFR1G1B1FFR0G0B0 */
			PUNPCKHWD(R4,R2);				/* R4 = FFR3G3B3FFR2G2B2 */
			R2 = R3;						/* R2 = R3               */
			PUNPCKLWD(R2,R1);				/* R2 = FFR5G5B5FFR4G4B4 */
			PUNPCKHWD(R3,R1);				/* R3 = FFR7G7B7FFR6G6B6 */
			STORE128(out, R0);  out += 16;	/* FFR1G1B1FFR0G0B0      */
			STORE128(out, R4);  out += 16;	/* FFR3G3B3FFR2G2B2      */
			STORE128(out, R2);  out += 16;	/* FFR5G5B5FFR4G4B4      */
			STORE128(out, R3);  out += 16;	/* FFR7G7B7FFR6G6B6      */
		} while (width -= 16);
		/* Jump to next row. */
		r += srcbump;
		g += srcbump;
		b += srcbump;
		out += dstbump;
	}
	return PRIMITIVES_SUCCESS;
}
#endif /* WITH_SSE2 */

/*---------------------------------------------------------------------------*/
#ifdef WITH_NEON
PRIMITIVES_HIDDEN pstatus_t neon_yCbCrToRGB_16s16s_P3P3(
	const INT16 *pSrc[3],
	int srcStep,
	INT16 *pDst[3],
	int dstStep,
	const prim_size_t *roi)	/* region of interest */
{
	/* TODO: If necessary, check alignments and call the general version. */

	int16x8_t zero = vdupq_n_s16(0);
	int16x8_t max = vdupq_n_s16(255);

	int16x8_t r_cr = vdupq_n_s16(22986);	//  1.403 << 14
	int16x8_t g_cb = vdupq_n_s16(-5636);	// -0.344 << 14
	int16x8_t g_cr = vdupq_n_s16(-11698);	// -0.714 << 14
	int16x8_t b_cb = vdupq_n_s16(28999);	//  1.770 << 14
	int16x8_t c4096 = vdupq_n_s16(4096);

	int16x8_t* y_buf  = (int16x8_t*) pSrc[0];
	int16x8_t* cb_buf = (int16x8_t*) pSrc[1];
	int16x8_t* cr_buf = (int16x8_t*) pSrc[2];
	int16x8_t* r_buf  = (int16x8_t*) pDst[0];
	int16x8_t* g_buf  = (int16x8_t*) pDst[1];
	int16x8_t* b_buf  = (int16x8_t*) pDst[2];

	int srcbump = srcStep / sizeof(int16x8_t);
	int dstbump = dstStep / sizeof(int16x8_t);
	int yp;

	int imax = roi->width * sizeof(INT16) / sizeof(int16x8_t);
	for (yp=0; yp<roi->height; ++yp)
	{
		int i;
		for (i=0; i<imax; i++)
		{
			/*
				In order to use NEON signed 16-bit integer multiplication we need to convert
				the floating point factors to signed int without loosing information.
				The result of this multiplication is 32 bit and we have a NEON instruction
				that returns the hi word of the saturated double.
				Thus we will multiply the factors by the highest possible 2^n, take the 
				upper 16 bits of the signed 32-bit result (vqdmulhq_s16 followed by a right
				shift by 1 to reverse the doubling) and correct	this result by multiplying it 
				by 2^(16-n).
				For the given factors in the conversion matrix the best possible n is 14.

				Example for calculating r:
				r = (y>>5) + 128 + (cr*1.403)>>5                       // our base formula
				r = (y>>5) + 128 + (HIWORD(cr*(1.403<<14)<<2))>>5      // see above
				r = (y+4096)>>5 + (HIWORD(cr*22986)<<2)>>5             // simplification
				r = ((y+4096)>>2 + HIWORD(cr*22986)) >> 3
			*/
		
			/* y = (y_buf[i] + 4096) >> 2 */
			int16x8_t y = vld1q_s16((INT16*) &y_buf[i]);
			y = vaddq_s16(y, c4096);
			y = vshrq_n_s16(y, 2);
			/* cb = cb_buf[i]; */
			int16x8_t cb = vld1q_s16((INT16*)&cb_buf[i]);
			/* cr = cr_buf[i]; */
			int16x8_t cr = vld1q_s16((INT16*) &cr_buf[i]);

			/* (y + HIWORD(cr*22986)) >> 3 */
			int16x8_t r = vaddq_s16(y, vshrq_n_s16(vqdmulhq_s16(cr, r_cr), 1));
			r = vshrq_n_s16(r, 3);
			/* r_buf[i] = MINMAX(r, 0, 255); */
			r = vminq_s16(vmaxq_s16(r, zero), max);
			vst1q_s16((INT16*)&r_buf[i], r);

			/* (y + HIWORD(cb*-5636) + HIWORD(cr*-11698)) >> 3 */
			int16x8_t g = vaddq_s16(y, vshrq_n_s16(vqdmulhq_s16(cb, g_cb), 1));
			g = vaddq_s16(g, vshrq_n_s16(vqdmulhq_s16(cr, g_cr), 1));
			g = vshrq_n_s16(g, 3);
			/* g_buf[i] = MINMAX(g, 0, 255); */
			g = vminq_s16(vmaxq_s16(g, zero), max);
			vst1q_s16((INT16*)&g_buf[i], g);

			/* (y + HIWORD(cb*28999)) >> 3 */
			int16x8_t b = vaddq_s16(y, vshrq_n_s16(vqdmulhq_s16(cb, b_cb), 1));
			b = vshrq_n_s16(b, 3);
			/* b_buf[i] = MINMAX(b, 0, 255); */
			b = vminq_s16(vmaxq_s16(b, zero), max);
			vst1q_s16((INT16*)&b_buf[i], b);
		}

		y_buf  += srcbump;
		cb_buf += srcbump;
		cr_buf += srcbump;
		r_buf += dstbump;
		g_buf += dstbump;
		b_buf += dstbump;
	}
	return PRIMITIVES_SUCCESS;
}
#endif /* WITH_NEON */


/* I don't see a direct IPP version of this, since the input is INT16
 * YCbCr.  It may be possible via  Deinterleave and then YCbCrToRGB_<mod>.
 * But that would likely be slower.
 */

/* ------------------------------------------------------------------------- */
void primitives_init_colors_opt(primitives_t* prims)
{
#if defined(WITH_SSE2)
	if (IsProcessorFeaturePresent(PF_SSE2_INSTRUCTIONS_AVAILABLE))
	{
		prims->RGBToRGB_16s8u_P3AC4R  = sse2_RGBToRGB_16s8u_P3AC4R;
		prims->yCbCrToRGB_16s16s_P3P3 = sse2_yCbCrToRGB_16s16s_P3P3;
		prims->RGBToYCbCr_16s16s_P3P3 = sse2_RGBToYCbCr_16s16s_P3P3;
	}
#elif defined(WITH_NEON)
	if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE))
	{
		prims->yCbCrToRGB_16s16s_P3P3 = neon_yCbCrToRGB_16s16s_P3P3;
	}
#endif /* WITH_SSE2 */
}