File: prim_colors.c

package info (click to toggle)
freerdp2 2.0.0~git20190204.1.2693389a%2Bdfsg1-1%2Bdeb10u2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 24,348 kB
  • sloc: ansic: 308,081; xml: 1,676; sh: 770; perl: 231; makefile: 158; python: 65
file content (513 lines) | stat: -rw-r--r-- 15,209 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/* FreeRDP: A Remote Desktop Protocol Client
 * Color conversion operations.
 * vi:ts=4 sw=4:
 *
 * Copyright 2011 Stephen Erisman
 * Copyright 2011 Norbert Federa <norbert.federa@thincast.com>
 * Copyright 2011 Martin Fleisz <martin.fleisz@thincast.com>
 * (c) Copyright 2012 Hewlett-Packard Development Company, L.P.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may
 * not use this file except in compliance with the License. You may obtain
 * a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <freerdp/types.h>
#include <freerdp/primitives.h>
#include <freerdp/codec/color.h>

#include "prim_internal.h"

#ifndef MINMAX
#define MINMAX(_v_, _l_, _h_) \
	((_v_) < (_l_) ? (_l_) : ((_v_) > (_h_) ? (_h_) : (_v_)))
#endif /* !MINMAX */
/* ------------------------------------------------------------------------- */
static pstatus_t general_yCbCrToRGB_16s8u_P3AC4R_BGRX(
    const INT16* pSrc[3], UINT32 srcStep,
    BYTE* pDst, UINT32 dstStep, UINT32 DstFormat,
    const prim_size_t* roi)
{
	UINT32 x, y;
	BYTE* pRGB = pDst;
	const INT16* pY  = pSrc[0];
	const INT16* pCb = pSrc[1];
	const INT16* pCr = pSrc[2];
	const size_t srcPad = (srcStep - (roi->width * 2)) / 2;
	const size_t dstPad = (dstStep - (roi->width * 4));
	const DWORD formatSize = GetBytesPerPixel(DstFormat);

	for (y = 0; y < roi->height; y++)
	{
		for (x = 0; x < roi->width; x++)
		{
			INT16 R, G, B;
			const INT32 divisor = 16;
			const INT32 Y = ((*pY++) + 4096) << divisor;
			const INT32 Cb = (*pCb++);
			const INT32 Cr = (*pCr++);
			const INT32 CrR = Cr * (INT32)(1.402525f * (1 << divisor));
			const INT32 CrG = Cr * (INT32)(0.714401f * (1 << divisor));
			const INT32 CbG = Cb * (INT32)(0.343730f * (1 << divisor));
			const INT32 CbB = Cb * (INT32)(1.769905f * (1 << divisor));
			R = ((INT16)((CrR + Y) >> divisor) >> 5);
			G = ((INT16)((Y - CbG - CrG) >> divisor) >> 5);
			B = ((INT16)((CbB + Y) >> divisor) >> 5);
			pRGB = writePixelBGRX(pRGB, formatSize, DstFormat, CLIP(R), CLIP(G),
			                      CLIP(B), 0xFF);
		}

		pY += srcPad;
		pCb += srcPad;
		pCr += srcPad;
		pRGB += dstPad;
	}

	return PRIMITIVES_SUCCESS;
}

static pstatus_t general_yCbCrToRGB_16s8u_P3AC4R_general(
    const INT16* pSrc[3], UINT32 srcStep,
    BYTE* pDst, UINT32 dstStep, UINT32 DstFormat,
    const prim_size_t* roi)
{
	UINT32 x, y;
	BYTE* pRGB = pDst;
	const INT16* pY  = pSrc[0];
	const INT16* pCb = pSrc[1];
	const INT16* pCr = pSrc[2];
	const size_t srcPad = (srcStep - (roi->width * 2)) / 2;
	const size_t dstPad = (dstStep - (roi->width * 4));
	const fkt_writePixel writePixel = getPixelWriteFunction(DstFormat);
	const DWORD formatSize = GetBytesPerPixel(DstFormat);

	for (y = 0; y < roi->height; y++)
	{
		for (x = 0; x < roi->width; x++)
		{
			INT16 R, G, B;
			const INT32 divisor = 16;
			const INT32 Y = ((*pY++) + 4096) << divisor;
			const INT32 Cb = (*pCb++);
			const INT32 Cr = (*pCr++);
			const INT32 CrR = Cr * (INT32)(1.402525f * (1 << divisor));
			const INT32 CrG = Cr * (INT32)(0.714401f * (1 << divisor));
			const INT32 CbG = Cb * (INT32)(0.343730f * (1 << divisor));
			const INT32 CbB = Cb * (INT32)(1.769905f * (1 << divisor));
			R = ((INT16)((CrR + Y) >> divisor) >> 5);
			G = ((INT16)((Y - CbG - CrG) >> divisor) >> 5);
			B = ((INT16)((CbB + Y) >> divisor) >> 5);
			pRGB = (*writePixel)(pRGB, formatSize, DstFormat, CLIP(R), CLIP(G),
			                     CLIP(B), 0xFF);
		}

		pY += srcPad;
		pCb += srcPad;
		pCr += srcPad;
		pRGB += dstPad;
	}

	return PRIMITIVES_SUCCESS;
}

static pstatus_t general_yCbCrToRGB_16s8u_P3AC4R(
    const INT16* pSrc[3], UINT32 srcStep,
    BYTE* pDst, UINT32 dstStep, UINT32 DstFormat,
    const prim_size_t* roi)
{
	switch (DstFormat)
	{
		case PIXEL_FORMAT_BGRA32:
		case PIXEL_FORMAT_BGRX32:
			return general_yCbCrToRGB_16s8u_P3AC4R_BGRX(pSrc, srcStep, pDst, dstStep, DstFormat, roi);

		default:
			return general_yCbCrToRGB_16s8u_P3AC4R_general(pSrc, srcStep, pDst, dstStep, DstFormat, roi);
	}
}

/* ------------------------------------------------------------------------- */

static pstatus_t general_yCbCrToRGB_16s16s_P3P3(
    const INT16* pSrc[3],  INT32 srcStep,
    INT16* pDst[3],  INT32 dstStep,
    const prim_size_t* roi)	/* region of interest */
{
	/**
	 * The decoded YCbCr coeffectients are represented as 11.5 fixed-point
	 * numbers:
	 *
	 * 1 sign bit + 10 integer bits + 5 fractional bits
	 *
	 * However only 7 integer bits will be actually used since the value range
	 * is [-128.0, 127.0].  In other words, the decoded coefficients are scaled
	 * by << 5 when interpreted as INT16.
	 * It was scaled in the quantization phase, so we must scale it back here.
	 */
	const INT16* yptr  = pSrc[0];
	const INT16* cbptr = pSrc[1];
	const INT16* crptr = pSrc[2];
	INT16* rptr = pDst[0];
	INT16* gptr = pDst[1];
	INT16* bptr = pDst[2];
	UINT32 srcbump = (srcStep - (roi->width * sizeof(UINT16))) / sizeof(UINT16);
	UINT32 dstbump = (dstStep - (roi->width * sizeof(UINT16))) / sizeof(UINT16);
	UINT32 y;

	for (y = 0; y < roi->height; y++)
	{
		UINT32 x;

		for (x = 0; x < roi->width; ++x)
		{
			/* INT32 is used intentionally because we calculate
			 * with shifted factors!
			 */
			INT32 y  = (INT32)(*yptr++);
			INT32 cb = (INT32)(*cbptr++);
			INT32 cr = (INT32)(*crptr++);
			INT32 r, g, b;
			/*
			 * This is the slow floating point version kept here for reference.
			 * y = y + 4096; // 128<<5=4096 so that we can scale the sum by>>5
			 * r = y + cr*1.403f;
			 * g = y - cb*0.344f - cr*0.714f;
			 * b = y + cb*1.770f;
			 * y_r_buf[i]  = CLIP(r>>5);
			 * cb_g_buf[i] = CLIP(g>>5);
			 * cr_b_buf[i] = CLIP(b>>5);
			 */
			/*
			 * We scale the factors by << 16 into 32-bit integers in order to
			 * avoid slower floating point multiplications.  Since the final
			 * result needs to be scaled by >> 5 we will extract only the
			 * upper 11 bits (>> 21) from the final sum.
			 * Hence we also have to scale the other terms of the sum by << 16.
			 * R: 1.403 << 16 = 91947
			 * G: 0.344 << 16 = 22544, 0.714 << 16 = 46792
			 * B: 1.770 << 16 = 115998
			 */
			y = (y + 4096) << 16;
			r = y + cr * 91947;
			g = y - cb * 22544 - cr * 46792;
			b = y + cb * 115998;
			*rptr++ = CLIP(r >> 21);
			*gptr++ = CLIP(g >> 21);
			*bptr++ = CLIP(b >> 21);
		}

		yptr  += srcbump;
		cbptr += srcbump;
		crptr += srcbump;
		rptr += dstbump;
		gptr += dstbump;
		bptr += dstbump;
	}

	return PRIMITIVES_SUCCESS;
}

/* ------------------------------------------------------------------------- */
static pstatus_t general_RGBToYCbCr_16s16s_P3P3(
    const INT16* pSrc[3],  INT32 srcStep,
    INT16* pDst[3],  INT32 dstStep,
    const prim_size_t* roi)	/* region of interest */
{
	/* The encoded YCbCr coefficients are represented as 11.5 fixed-point
	 * numbers:
	 *
	 * 1 sign bit + 10 integer bits + 5 fractional bits
	 *
	 * However only 7 integer bits will be actually used since the value
	 * range is [-128.0, 127.0].  In other words, the encoded coefficients
	 * is scaled by << 5 when interpreted as INT16.
	 * It will be scaled down to original during the quantization phase.
	 */
	const INT16* rptr = pSrc[0];
	const INT16* gptr = pSrc[1];
	const INT16* bptr = pSrc[2];
	INT16* yptr  = pDst[0];
	INT16* cbptr = pDst[1];
	INT16* crptr = pDst[2];
	UINT32 srcbump = (srcStep - (roi->width * sizeof(UINT16))) / sizeof(UINT16);
	UINT32 dstbump = (dstStep - (roi->width * sizeof(UINT16))) / sizeof(UINT16);
	UINT32 y;

	for (y = 0; y < roi->height; y++)
	{
		UINT32 x;

		for (x = 0; x < roi->width; ++x)
		{
			/* INT32 is used intentionally because we calculate with
			 * shifted factors!
			 */
			INT32 r = (INT32)(*rptr++);
			INT32 g = (INT32)(*gptr++);
			INT32 b = (INT32)(*bptr++);
			/* We scale the factors by << 15 into 32-bit integers in order
			 * to avoid slower floating point multiplications.  Since the
			 * terms need to be scaled by << 5 we simply scale the final
			 * sum by >> 10
			 *
			 * Y:  0.299000 << 15 = 9798,  0.587000 << 15 = 19235,
			 *     0.114000 << 15 = 3735
			 * Cb: 0.168935 << 15 = 5535,  0.331665 << 15 = 10868,
			 *     0.500590 << 15 = 16403
			 * Cr: 0.499813 << 15 = 16377, 0.418531 << 15 = 13714,
			 *     0.081282 << 15 = 2663
			 */
			INT32 y  = (r *  9798 + g *  19235 + b *  3735) >> 10;
			INT32 cb = (r * -5535 + g * -10868 + b * 16403) >> 10;
			INT32 cr = (r * 16377 + g * -13714 + b * -2663) >> 10;
			*yptr++  = (INT16) MINMAX(y - 4096, -4096, 4095);
			*cbptr++ = (INT16) MINMAX(cb, -4096, 4095);
			*crptr++ = (INT16) MINMAX(cr, -4096, 4095);
		}

		yptr  += srcbump;
		cbptr += srcbump;
		crptr += srcbump;
		rptr += dstbump;
		gptr += dstbump;
		bptr += dstbump;
	}

	return PRIMITIVES_SUCCESS;
}

static INLINE void writeScanlineGeneric(BYTE* dst, DWORD formatSize, UINT32 DstFormat,
                                        const INT16* r, const INT16* g, const INT16* b, DWORD width)
{
	DWORD x;
	fkt_writePixel writePixel = getPixelWriteFunction(DstFormat);

	for (x = 0; x < width; x++)
		dst = (*writePixel)(dst, formatSize, DstFormat, *r++, *g++, *b++, 0xFF);
}

static INLINE void writeScanlineRGB(BYTE* dst, DWORD formatSize, UINT32 DstFormat,
                                    const INT16* r, const INT16* g, const INT16* b, DWORD width)
{
	DWORD x;

	for (x = 0; x < width; x++)
	{
		const BYTE R = CLIP(*r++);
		const BYTE G = CLIP(*g++);
		const BYTE B = CLIP(*b++);
		*dst++ = R;
		*dst++ = G;
		*dst++ = B;
	}
}

static INLINE void writeScanlineBGR(BYTE* dst, DWORD formatSize, UINT32 DstFormat,
                                    const INT16* r, const INT16* g, const INT16* b, DWORD width)
{
	DWORD x;

	for (x = 0; x < width; x++)
	{
		const BYTE R = CLIP(*r++);
		const BYTE G = CLIP(*g++);
		const BYTE B = CLIP(*b++);
		*dst++ = B;
		*dst++ = G;
		*dst++ = R;
	}
}

static INLINE void writeScanlineBGRX(BYTE* dst, DWORD formatSize, UINT32 DstFormat,
                                     const INT16* r, const INT16* g, const INT16* b, DWORD width)
{
	DWORD x;

	for (x = 0; x < width; x++)
	{
		const BYTE R = CLIP(*r++);
		const BYTE G = CLIP(*g++);
		const BYTE B = CLIP(*b++);
		*dst++ = B;
		*dst++ = G;
		*dst++ = R;
		*dst++ = 0xFF;
	}
}

static INLINE void writeScanlineRGBX(BYTE* dst, DWORD formatSize, UINT32 DstFormat,
                                     const INT16* r, const INT16* g, const INT16* b, DWORD width)
{
	DWORD x;

	for (x = 0; x < width; x++)
	{
		const BYTE R = CLIP(*r++);
		const BYTE G = CLIP(*g++);
		const BYTE B = CLIP(*b++);
		*dst++ = R;
		*dst++ = G;
		*dst++ = B;
		*dst++ = 0xFF;
	}
}

static INLINE void writeScanlineXBGR(BYTE* dst, DWORD formatSize, UINT32 DstFormat,
                                     const INT16* r, const INT16* g, const INT16* b, DWORD width)
{
	DWORD x;

	for (x = 0; x < width; x++)
	{
		const BYTE R = CLIP(*r++);
		const BYTE G = CLIP(*g++);
		const BYTE B = CLIP(*b++);
		*dst++ = 0xFF;
		*dst++ = B;
		*dst++ = G;
		*dst++ = R;
	}
}

static INLINE void writeScanlineXRGB(BYTE* dst, DWORD formatSize, UINT32 DstFormat,
                                     const INT16* r, const INT16* g, const INT16* b, DWORD width)
{
	DWORD x;

	for (x = 0; x < width; x++)
	{
		const BYTE R = CLIP(*r++);
		const BYTE G = CLIP(*g++);
		const BYTE B = CLIP(*b++);
		*dst++ = 0xFF;
		*dst++ = R;
		*dst++ = G;
		*dst++ = B;
	}
}

typedef void (*fkt_writeScanline)(BYTE*, DWORD, UINT32, const INT16*,
                                  const INT16*, const INT16*, DWORD);

static INLINE fkt_writeScanline getScanlineWriteFunction(DWORD format)
{
	switch (format)
	{
		case PIXEL_FORMAT_ARGB32:
		case PIXEL_FORMAT_XRGB32:
			return writeScanlineXRGB;

		case PIXEL_FORMAT_ABGR32:
		case PIXEL_FORMAT_XBGR32:
			return writeScanlineXBGR;

		case PIXEL_FORMAT_RGBA32:
		case PIXEL_FORMAT_RGBX32:
			return writeScanlineRGBX;

		case PIXEL_FORMAT_BGRA32:
		case PIXEL_FORMAT_BGRX32:
			return writeScanlineBGRX;

		case PIXEL_FORMAT_BGR24:
			return writeScanlineBGR;

		case PIXEL_FORMAT_RGB24:
			return writeScanlineRGB;

		default:
			return writeScanlineGeneric;
	}
}

/* ------------------------------------------------------------------------- */
static pstatus_t general_RGBToRGB_16s8u_P3AC4R_general(
    const INT16* const pSrc[3],	/* 16-bit R,G, and B arrays */
    UINT32 srcStep,			/* bytes between rows in source data */
    BYTE* pDst,			/* 32-bit interleaved ARGB (ABGR?) data */
    UINT32 dstStep,			/* bytes between rows in dest data */
    UINT32 DstFormat,
    const prim_size_t* roi)	/* region of interest */
{
	const INT16* r  = pSrc[0];
	const INT16* g  = pSrc[1];
	const INT16* b  = pSrc[2];
	UINT32 y;
	const DWORD srcAdd = srcStep / sizeof(INT16);
	fkt_writeScanline writeScanline = getScanlineWriteFunction(DstFormat);
	const DWORD formatSize = GetBytesPerPixel(DstFormat);

	for (y = 0; y < roi->height; ++y)
	{
		(*writeScanline)(pDst, formatSize, DstFormat, r, g, b, roi->width);
		pDst += dstStep;
		r += srcAdd;
		g += srcAdd;
		b += srcAdd;
	}

	return PRIMITIVES_SUCCESS;
}

static pstatus_t general_RGBToRGB_16s8u_P3AC4R_BGRX(
    const INT16* const pSrc[3],	/* 16-bit R,G, and B arrays */
    UINT32 srcStep,			/* bytes between rows in source data */
    BYTE* pDst,			/* 32-bit interleaved ARGB (ABGR?) data */
    UINT32 dstStep,			/* bytes between rows in dest data */
    UINT32 DstFormat,
    const prim_size_t* roi)	/* region of interest */
{
	const INT16* r  = pSrc[0];
	const INT16* g  = pSrc[1];
	const INT16* b  = pSrc[2];
	UINT32 y;
	const DWORD srcAdd = srcStep / sizeof(INT16);
	const DWORD formatSize = GetBytesPerPixel(DstFormat);

	for (y = 0; y < roi->height; ++y)
	{
		writeScanlineBGRX(pDst, formatSize, DstFormat, r, g, b, roi->width);
		pDst += dstStep;
		r += srcAdd;
		g += srcAdd;
		b += srcAdd;
	}

	return PRIMITIVES_SUCCESS;
}

static pstatus_t general_RGBToRGB_16s8u_P3AC4R(
    const INT16* const pSrc[3],	/* 16-bit R,G, and B arrays */
    UINT32 srcStep,			/* bytes between rows in source data */
    BYTE* pDst,			/* 32-bit interleaved ARGB (ABGR?) data */
    UINT32 dstStep,			/* bytes between rows in dest data */
    UINT32 DstFormat,
    const prim_size_t* roi)	/* region of interest */
{
	switch (DstFormat)
	{
		case PIXEL_FORMAT_BGRA32:
		case PIXEL_FORMAT_BGRX32:
			return general_RGBToRGB_16s8u_P3AC4R_BGRX(pSrc, srcStep, pDst, dstStep, DstFormat, roi);

		default:
			return general_RGBToRGB_16s8u_P3AC4R_general(pSrc, srcStep, pDst, dstStep, DstFormat, roi);
	}
}
/* ------------------------------------------------------------------------- */
void primitives_init_colors(primitives_t* prims)
{
	prims->yCbCrToRGB_16s8u_P3AC4R = general_yCbCrToRGB_16s8u_P3AC4R;
	prims->yCbCrToRGB_16s16s_P3P3 = general_yCbCrToRGB_16s16s_P3P3;
	prims->RGBToYCbCr_16s16s_P3P3 = general_RGBToYCbCr_16s16s_P3P3;
	prims->RGBToRGB_16s8u_P3AC4R  = general_RGBToRGB_16s8u_P3AC4R;
}