File: decal-f.sdr

package info (click to toggle)
freespace2 24.0.2%2Brepack-1
  • links: PTS, VCS
  • area: non-free
  • in suites: trixie
  • size: 43,188 kB
  • sloc: cpp: 583,107; ansic: 21,729; python: 1,174; sh: 464; makefile: 248; xml: 181
file content (180 lines) | stat: -rw-r--r-- 5,179 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

// NOTE: The technique and some of this code is based on this tutorial:
// http://martindevans.me/game-development/2015/02/27/Drawing-Stuff-On-Other-Stuff-With-Deferred-Screenspace-Decals/

#include "lighting.sdr"
#include "normals.sdr"
#include "gamma.sdr"

out vec4 fragOut0; // Diffuse buffer
out vec4 fragOut1; // Normal buffer
out vec4 fragOut2; // Emissive buffer

uniform sampler2D gDepthBuffer;
uniform sampler2D gNormalBuffer;

uniform sampler2DArray diffuseMap;
uniform sampler2DArray glowMap;
uniform sampler2DArray normalMap;

layout (std140) uniform decalGlobalData {
	mat4 viewMatrix;
	mat4 projMatrix;
	mat4 invViewMatrix;
	mat4 invProjMatrix;

	vec3 ambientLight;

	vec2 viewportSize;
};
layout (std140) uniform decalInfoData {
	mat4 model_matrix;
	mat4 inv_model_matrix;

	vec3 decal_direction;
	float normal_angle_cutoff;

	int diffuse_index;
	int glow_index;
	int normal_index;
	float angle_fade_start;

	float alpha_scale;
	int diffuse_blend_mode;
	int glow_blend_mode;
};

vec3 computeViewPosition(vec2 textureCoord) {
	vec4 clipSpaceLocation;
	vec2 normalizedCoord = textureCoord / viewportSize;

	clipSpaceLocation.xy = normalizedCoord * 2.0f - 1.0f;
	clipSpaceLocation.z = texelFetch(gDepthBuffer, ivec2(textureCoord), 0).r * 2.0f - 1.0f;
	clipSpaceLocation.w = 1.0f;

	vec4 homogenousLocation = invProjMatrix * clipSpaceLocation;

	return homogenousLocation.xyz / homogenousLocation.w;
}

vec3 getPixelNormal(vec3 frag_position, vec2 tex_coord, inout float alpha, out vec3 binormal, out vec3 tangent) {
#ifdef USE_NORMAL_MAP
	// If we can then we just use the existing normal buffer
    vec3 normal = texelFetch(gNormalBuffer, ivec2(tex_coord), 0).xyz;

	// If we use the normal map then we don't really need these values so we don't need to compute them here
    binormal = vec3(0.0);
    tangent = vec3(0.0);
#else
	// Use some fancy screen-space derivates to determine the normal of the current pixel by looking at the surrounding pixels
	vec3 pos_dx = dFdx(frag_position);
	vec3 pos_dy = dFdy(frag_position);

    vec3 normal = normalize(cross(pos_dx, pos_dy));

    binormal = normalize(pos_dx);
    tangent = normalize(pos_dy);
#endif

	//Calculate angle between surface normal and decal direction
	float angle = acos(dot(normal, decal_direction));

	if (angle > normal_angle_cutoff) {
		// The angle between surface normal and decal direction is too big
		discard;
	}

	// Make a smooth alpha transition leading up to an edge
	alpha = alpha * (1 - smoothstep(angle_fade_start, normal_angle_cutoff, angle));

	return normal;
}

vec2 getDecalTexCoord(vec3 view_pos, inout float alpha) {
	vec4 object_pos = inv_model_matrix * invViewMatrix * vec4(view_pos, 1.0);

	bvec3 invalidComponents = greaterThan(abs(object_pos.xyz), vec3(0.5));
	bvec4 nanComponents = isnan(object_pos); // nan can happen some times if we have an infinite depth value

	if (any(invalidComponents) || any(nanComponents)) {
		// Fragment is out of the box
		discard;
	}

	// Fade out the texture when it gets close to the top or bottom of the decal box
	alpha = alpha * (1.0 - smoothstep(0.4, 0.5, abs(object_pos.z)));

	return object_pos.xy + 0.5;
}

void main() {
	vec3 frag_position = computeViewPosition(gl_FragCoord.xy);

	float alpha = alpha_scale;
	vec2 tex_coord = getDecalTexCoord(frag_position, alpha);

	vec3 binormal;
	vec3 tangent;
	vec3 normal = getPixelNormal(frag_position, gl_FragCoord.xy, alpha, binormal, tangent);

	vec4 diffuse_out = vec4(0.0);
	vec4 emissive_out = vec4(0.0);
	vec3 normal_out = vec3(0.0);

	if (diffuse_index >= 0) {
		// We have a valid diffuse map
		vec4 color = texture(diffuseMap, vec3(tex_coord, float(diffuse_index)));

		color.rgb = srgb_to_linear(color.rgb);

		if (diffuse_blend_mode == 0) {
			// Normal alpha blending
			diffuse_out = vec4(color.rgb, color.a * alpha);
		} else {
			// Additive blending
			diffuse_out = vec4(color.rgb * alpha, 1.0);
		}

		// The main model shader applies ambient lighting by drawing the ambient part of the texture into the emissive
		// texture. We do the same here to make sure the decal material is applied correctly
		if (glow_blend_mode == 0) {
			// Normal alpha blending
			emissive_out = vec4(color.rgb * ambientLight, color.a * alpha);
		} else {
			// Additive blending
			emissive_out = vec4(alpha * color.rgb * ambientLight, 1.0);
		}
	}

	if (glow_index >= 0) {
		// We have a valid glow map
		vec4 color = texture(glowMap, vec3(tex_coord, float(glow_index)));

		color.rgb = srgb_to_linear(color.rgb) * GLOW_MAP_SRGB_MULTIPLIER;

		color.rgb *= GLOW_MAP_INTENSITY;

		if (glow_blend_mode == 0) {
			// Normal alpha blending
			emissive_out = vec4(color.rgb + emissive_out.rgb * emissive_out.a, color.a * alpha);
		} else {
			// Additive blending
			emissive_out.rgb += color.rgb * alpha;
		}
	}

	if (normal_index >= 0) {
		vec3 decalNormal = unpackNormal(texture(normalMap, vec3(tex_coord, float(normal_index))).ag);

		mat3 tangentToView;
		tangentToView[0] = tangent;
		tangentToView[1] = binormal;
		tangentToView[2] = normal;

		normal_out = tangentToView * decalNormal * alpha;
	}

	fragOut0 = diffuse_out;
	fragOut1 = vec4(normal_out, 0.0);
	fragOut2 = emissive_out;
}