File: NanoVGRenderer.cpp

package info (click to toggle)
freespace2 24.0.2%2Brepack-1
  • links: PTS, VCS
  • area: non-free
  • in suites: trixie
  • size: 43,188 kB
  • sloc: cpp: 583,107; ansic: 21,729; python: 1,174; sh: 464; makefile: 248; xml: 181
file content (800 lines) | stat: -rw-r--r-- 25,214 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
//
// Copyright (c) 2009-2013 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty.  In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would be
//    appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//    misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//

// This code was adapted from the original NanoVG OpenGL renderer to work with the FreeSpace Open graphics API

#include "NanoVGRenderer.h"
#include "tracing/tracing.h"


// That is a wrapper function for log prints to be availiable for nanovg components. For now it is stb_truetype.h
// Planted by ksotar with blessing from asarium
extern "C" {
	void nvgOldCPrintf(SCP_FORMAT_STRING const char *message, ...) {
		if (LoggingEnabled) {
			SCP_string buf;
			va_list args;
			va_start(args, message);
			vsprintf(buf, message, args);
			va_end(args);
			outwnd_printf2("%s", message);
		}
	}
}


namespace {
using namespace graphics::paths;

int nvgRenderCreate(void* userptr) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);

	try {
		renderer->initialize();
		return 1;
	} catch (...) {
		return 0;
	}
}

void nvgRenderDelete(void* userptr) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);
	delete renderer;
}

void nvgViewport(void* userptr, int width, int height) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);
	renderer->setViewport(width, height);
}

void nvgRenderTriangles(void* userptr, NVGpaint* paint, NVGscissor* scissor, const NVGvertex* verts, int nverts) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);
	renderer->renderTriangles(paint, scissor, verts, nverts);
}
void nvgRenderFill(void* userptr,
				   NVGpaint* paint,
				   NVGscissor* scissor,
				   float fringe,
				   const float* bounds,
				   const NVGpath* paths,
				   int npaths) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);
	renderer->renderFill(paint, scissor, fringe, bounds, paths, npaths);
}
void nvgRenderStroke(void* userptr,
					 NVGpaint* paint,
					 NVGscissor* scissor,
					 float fringe,
					 float strokeWidth,
					 const NVGpath* paths,
					 int npaths) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);
	renderer->renderStroke(paint, scissor, fringe, strokeWidth, paths, npaths);
}
void nvgRenderFlush(void* userptr) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);
	renderer->renderFlush();

}
void nvgRenderCancel(void* userptr) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);
	renderer->renderCancel();
}
int nvgCreateTexture(void* userptr, int type, int w, int h, int imageFlags, const unsigned char* data) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);
	return renderer->createTexture(type, w, h, imageFlags, data);
}
int nvgUpdateTexture(void* userptr, int image, int x, int y, int w, int h, const unsigned char* data) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);
	return renderer->updateTexture(image, x, y, w, h, data);
}
int nvgDeleteTexture(void* userptr, int image) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);
	return renderer->deleteTexture(image);
}
int nvgGetTextureSize(void* userptr, int image, int* w, int* h) {
	auto renderer = static_cast<NanoVGRenderer*>(userptr);
	return renderer->getTextureSize(image, w, h);
}

NVGcolor premulColor(NVGcolor c) {
	c.r *= c.a;
	c.g *= c.a;
	c.b *= c.a;
	return c;
}
vec4 colorToVec4(NVGcolor c) {
	vec4 out;
	out.xyzw.x = c.r;
	out.xyzw.y = c.g;
	out.xyzw.z = c.b;
	out.xyzw.w = c.a;
	return out;
}
void xformToMat3x4(float m3[12], float* t) {
	m3[0] = t[0];
	m3[1] = t[1];
	m3[2] = 0.0f;
	m3[3] = 0.0f;
	m3[4] = t[2];
	m3[5] = t[3];
	m3[6] = 0.0f;
	m3[7] = 0.0f;
	m3[8] = t[4];
	m3[9] = t[5];
	m3[10] = 1.0f;
	m3[11] = 0.0f;
}

size_t maxVertCount(const NVGpath* paths, size_t npaths) {
	size_t count = 0;
	for (size_t i = 0; i < npaths; i++) {
		count += paths[i].nfill;
		count += paths[i].nstroke;
	}
	return count;
}

void vertexSet(NVGvertex* vtx, float x, float y, float u, float v) {
	vtx->x = x;
	vtx->y = y;
	vtx->u = u;
	vtx->v = v;
}

nanovg_material getDefaultMaterial() {
	nanovg_material mat;

	material_set_nanovg(&mat, -1);

	return mat;
}
}

namespace graphics {
namespace paths {

NVGcontext* createNanoVGContext() {
	NVGparams params;
	NVGcontext* ctx = nullptr;
	auto nvgRenderer = new NanoVGRenderer();

	memset(&params, 0, sizeof(params));
	params.renderCreate = nvgRenderCreate;
	params.renderDelete = nvgRenderDelete;
	params.renderViewport = nvgViewport;

	params.renderTriangles = nvgRenderTriangles;
	params.renderFill = nvgRenderFill;
	params.renderStroke = nvgRenderStroke;
	params.renderFlush = nvgRenderFlush;
	params.renderCancel = nvgRenderCancel;

	params.renderCreateTexture = nvgCreateTexture;
	params.renderUpdateTexture = nvgUpdateTexture;
	params.renderDeleteTexture = nvgDeleteTexture;
	params.renderGetTextureSize = nvgGetTextureSize;

	params.userPtr = nvgRenderer;
	params.edgeAntiAlias = 1;

	ctx = nvgCreateInternal(&params);
	if (ctx == nullptr) {
		return nullptr;
	}

	return ctx;
}

void deleteNanoVGContext(NVGcontext* context) {
	Assertion(context != nullptr, "Invalid context passed!");

	nvgDeleteInternal(context);
}

NanoVGRenderer::NanoVGRenderer() {
}

void NanoVGRenderer::initialize() {
	_vertexBuffer = gr_create_buffer(BufferType::Vertex, BufferUsageHint::Streaming);

	_vertexLayout.add_vertex_component(vertex_format_data::POSITION2, sizeof(NVGvertex), (int) offsetof(NVGvertex, x));
	_vertexLayout.add_vertex_component(vertex_format_data::TEX_COORD2, sizeof(NVGvertex), (int) offsetof(NVGvertex, u));

	// Now create all the materials that we are going to need
	{
		auto material = getDefaultMaterial();

		// Material for simple triangle draws. These use different primitive types so if that is moved into the
		// material struct at some point this can be easily adjusted
		_trianglesMaterial = material;
		_triangleFillMaterial = material;
		_triangleStrokeMaterial = material;
	}
	{
		// Materials for the fill shader
		auto material = getDefaultMaterial();
		material.set_stencil_test(true);
		material.set_stencil_mask(0xFF);
		material.set_stencil_func(ComparisionFunction::Always, 0, 0xFF);
		material.set_color_mask(false, false, false, false);

		material.set_front_stencil_op(StencilOperation::Keep, StencilOperation::Keep, StencilOperation::IncrementWrap);
		material.set_back_stencil_op(StencilOperation::Keep, StencilOperation::Keep, StencilOperation::DecrementWrap);

		_fillShapeMaterial = material;

		material.set_color(true, true, true, true);
		material.set_stencil_func(ComparisionFunction::Equal, 0x00, 0xFF);

		material.set_front_stencil_op(StencilOperation::Keep, StencilOperation::Keep, StencilOperation::Keep);
		material.set_back_stencil_op(StencilOperation::Keep, StencilOperation::Keep, StencilOperation::Keep);

		_fillAntiAliasMaterial = material;

		material.set_stencil_func(ComparisionFunction::NotEqual, 0x00, 0xFF);

		material.set_front_stencil_op(StencilOperation::Zero, StencilOperation::Zero, StencilOperation::Zero);
		material.set_back_stencil_op(StencilOperation::Zero, StencilOperation::Zero, StencilOperation::Zero);

		_fillFillMaterial = material;
	}
	{
		// Pipeline states for the stroke shader
		auto material = getDefaultMaterial();
		material.set_stencil_test(true);
		material.set_stencil_mask(0xFF);
		material.set_stencil_func(ComparisionFunction::Equal, 0x00, 0xFF);
		material.set_front_stencil_op(StencilOperation::Keep, StencilOperation::Keep, StencilOperation::Increment);
		material.set_back_stencil_op(StencilOperation::Keep, StencilOperation::Keep, StencilOperation::Increment);
		_strokeFillMaterial = material;

		material.set_front_stencil_op(StencilOperation::Keep, StencilOperation::Keep, StencilOperation::Keep);
		material.set_back_stencil_op(StencilOperation::Keep, StencilOperation::Keep, StencilOperation::Keep);
		_strokeAntiaiasMaterial = material;

		material.set_color_mask(false, false, false, false);
		material.set_stencil_func(ComparisionFunction::Always, 0x00, 0xFF);
		material.set_front_stencil_op(StencilOperation::Zero, StencilOperation::Zero, StencilOperation::Zero);
		material.set_back_stencil_op(StencilOperation::Zero, StencilOperation::Zero, StencilOperation::Zero);
		_strokeClearStencilMaterial = material;
	}
}

void NanoVGRenderer::setViewport(int width, int height) {
	_viewport.x = width;
	_viewport.y = height;
}

void NanoVGRenderer::renderFill(NVGpaint* paint,
								NVGscissor* scissor,
								float fringe,
								const float* bounds,
								const NVGpath* paths,
								int npaths) {
	if (npaths <= 0) {
		// Ignore irrelevant render calls
		mprintf(("NanoVG asked us to render filled triangles but no paths were supplied!\n"));
		return;
	}

	auto call = addDrawCall();

	call->type = CallType::Fill;
	call->pathOffset = static_cast<uint32_t>(addPaths((size_t) npaths));
	call->pathCount = static_cast<uint32_t>((size_t) npaths);
	call->image = paint->image;

	if (npaths == 1 && paths[0].convex) {
		call->type = CallType::ConvexFill;
	}

	// Allocate vertices for all the paths.
	auto maxverts = maxVertCount(paths, (size_t) npaths) + 6;
	auto offset = addVertices(maxverts);

	for (int i = 0; i < npaths; i++) {
		Path* copy = &_paths[call->pathOffset + i];
		const NVGpath* path = &paths[i];
		memset(copy, 0, sizeof(Path));
		if (path->nfill > 0) {
			copy->fillOffset = static_cast<uint32_t>(offset);
			copy->fillCount = static_cast<uint32_t>((size_t) path->nfill);
			memcpy(&_vertices[offset], path->fill, sizeof(NVGvertex) * path->nfill);
			offset += path->nfill;
		}
		if (path->nstroke > 0) {
			copy->strokeOffset = static_cast<uint32_t>(offset);
			copy->strokeCount = static_cast<uint32_t>((size_t) path->nstroke);
			memcpy(&_vertices[offset], path->stroke, sizeof(NVGvertex) * path->nstroke);
			offset += path->nstroke;
		}
	}

	// Quad
	call->triangleOffset = static_cast<uint32_t>(offset);
	call->triangleCount = 6;
	auto quad = &_vertices[call->triangleOffset];
	vertexSet(&quad[0], bounds[0], bounds[3], 0.5f, 1.0f);
	vertexSet(&quad[1], bounds[2], bounds[3], 0.5f, 1.0f);
	vertexSet(&quad[2], bounds[2], bounds[1], 0.5f, 1.0f);

	vertexSet(&quad[3], bounds[0], bounds[3], 0.5f, 1.0f);
	vertexSet(&quad[4], bounds[2], bounds[1], 0.5f, 1.0f);
	vertexSet(&quad[5], bounds[0], bounds[1], 0.5f, 1.0f);

	// Setup uniforms for draw calls
	if (call->type == CallType::Fill) {
		call->uniformIndex = addUniformData(2);
		// Simple shader for stencil
		auto frag = &_uniformData[call->uniformIndex];
		frag->strokeThr = -1.0f;
		frag->type = NanoVGShaderType::Simple;
		// Fill shader
		convertPaint(&_uniformData[call->uniformIndex + 1], paint, scissor, fringe, fringe, -1.0f);
	} else {
		call->uniformIndex = addUniformData(1);
		// Fill shader
		convertPaint(&_uniformData[call->uniformIndex], paint, scissor, fringe, fringe, -1.0f);
	}
}
void NanoVGRenderer::renderTriangles(NVGpaint* paint, NVGscissor* scissor, const NVGvertex* verts, int nverts) {
	if (nverts <= 0) {
		// Ignore irrelevant render calls
		mprintf(("NanoVG asked us to render triangles but no vertices were supplied!\n"));
		return;
	}

	_vertices.insert(_vertices.end(), verts, verts + nverts);

	auto call = addDrawCall();
	call->type = CallType::Triangles;
	call->triangleCount = static_cast<uint32_t>(nverts);
	call->triangleOffset = static_cast<uint32_t>(addVertices(verts, static_cast<size_t>(nverts)));
	call->image = paint->image;

	call->uniformIndex = addUniformData(1);

	auto uniformData = &_uniformData[call->uniformIndex];
	auto succcess = convertPaint(uniformData, paint, scissor, 1.0f, 1.0f, -1.0f);

	Assertion(succcess, "Failed to convert paint, probably caused by an invalid texture handle.");

	uniformData->type = NanoVGShaderType::Image;
}
void NanoVGRenderer::renderStroke(NVGpaint* paint,
								  NVGscissor* scissor,
								  float fringe,
								  float strokeWidth,
								  const NVGpath* paths,
								  int npaths) {
	if (npaths <= 0) {
		// Ignore irrelevant render calls
		mprintf(("NanoVG asked us to render stroke triangles but no paths were supplied!\n"));
		return;
	}

	auto call = addDrawCall();

	call->type = CallType::Stroke;
	call->pathOffset = static_cast<uint32_t>(addPaths((size_t) npaths));
	call->pathCount = static_cast<uint32_t>(npaths);
	call->image = paint->image;

	// Allocate vertices for all the paths.
	auto maxverts = maxVertCount(paths, (size_t) npaths);
	auto offset = addVertices(maxverts);

	for (int i = 0; i < npaths; i++) {
		Path* copy = &_paths[call->pathOffset + i];
		const NVGpath* path = &paths[i];
		memset(copy, 0, sizeof(*copy));
		if (path->nstroke) {
			copy->strokeOffset = static_cast<uint32_t>(offset);
			copy->strokeCount = static_cast<uint32_t>(path->nstroke);
			memcpy(&_vertices[offset], path->stroke, sizeof(NVGvertex) * path->nstroke);
			offset += path->nstroke;
		}
	}
	// Fill shader
	call->uniformIndex = addUniformData(2);

	convertPaint(&_uniformData[call->uniformIndex], paint, scissor, strokeWidth, fringe, -1.0f);
	convertPaint(&_uniformData[call->uniformIndex + 1], paint, scissor, strokeWidth, fringe, 1.0f - 0.5f / 255.0f);
}
void NanoVGRenderer::renderFlush() {
	if (_drawCalls.empty()) {
		return;
	}

	TRACE_SCOPE(tracing::NanoVGFlushFrame);
	GR_DEBUG_SCOPE("NanoVG flush");

	gr_set_viewport(0, 0, gr_screen.max_w, gr_screen.max_h);

	_uniformBuffer = gr_get_uniform_buffer(uniform_block_type::NanoVGData, _uniformData.size());
	// This copies the uniform data from our vector into the uniform buffer aligner
	for (auto& uniform : _uniformData) {
		memcpy(_uniformBuffer.aligner().addTypedElement<nanovg_draw_data>(), &uniform, sizeof(uniform));
	}

	_uniformBuffer.submitData();
	gr_update_buffer_data(_vertexBuffer, sizeof(NVGvertex) * _vertices.size(), _vertices.data());

	for (auto& drawCall : _drawCalls) {
		switch (drawCall.type) {
		case CallType::Fill:
			drawFill(drawCall);
			break;
		case CallType::ConvexFill:
			drawConvexFill(drawCall);
			break;
		case CallType::Stroke:
			drawStroke(drawCall);
			break;
		case CallType::Triangles:
			drawTriangles(drawCall);
			break;
		}
	}

	// Reset all data again
	renderCancel();
}
void NanoVGRenderer::renderCancel() {
	// Clear all data written by the render functions
	_vertices.clear();
	_uniformData.clear();
	_drawCalls.clear();
	_paths.clear();
}
int NanoVGRenderer::createTexture(int type, int w, int h, int imageFlags, const unsigned char* data) {
	int bpp;
	if (type == NVG_TEXTURE_RGBA) {
		bpp = 32;
	} else {
		bpp = 8;
	}

	Assertion(!(imageFlags & NVG_IMAGE_REPEATX), "Repeat X is not supported yet!");
	Assertion(!(imageFlags & NVG_IMAGE_REPEATY), "Repeat Y is not supported yet!");
	Assertion(!(imageFlags & NVG_IMAGE_GENERATE_MIPMAPS), "Generate Mipmaps is not supported yet!");

	std::unique_ptr<uint8_t[]> data_buffer(new uint8_t[w * h * bpp]);
	if (data != nullptr) {
		memcpy(data_buffer.get(), data, static_cast<size_t>(w * h * bpp));
	}

	Image img;
	img.data = std::move(data_buffer);
	img.bitmap = bm_create(bpp, w, h, img.data.get(), bpp == 8 ? BMP_AABITMAP : 0);
	img.type = type;
	img.flags = imageFlags;
	img.width = w;
	img.height = h;

	auto id = ++_lastImageId;
	_textureMap.insert(std::make_pair(id, std::move(img)));

	return id;
}
int NanoVGRenderer::updateTexture(int image, int  /*x*/, int  /*y*/, int  /*w*/, int  /*h*/, const unsigned char* data) {
	auto texture = getTexture(image);
	if (texture == nullptr) {
		return 0;
	}

	int bpp;
	if (texture->type == NVG_TEXTURE_RGBA) {
		bpp = 32;
	} else {
		bpp = 8;
	}

	// Copy the updated data to our internal buffer so that changes in the hardware texture detail don't discard the
	// changes NanoVG made to the texture
	memcpy(texture->data.get(), data, texture->width * texture->height * bpp / 8);

	// TODO: This could probably be done better by only uploading the changed area
	gr_update_texture(texture->bitmap, bpp, data, texture->width, texture->height);

	return 1;
}
int NanoVGRenderer::deleteTexture(int image) {
	auto iter = _textureMap.find(image);
	if (iter == _textureMap.end()) {
		return 0;
	}

	bm_release(iter->second.bitmap);
	// This will call the destructor of the class and free the resources
	_textureMap.erase(iter);

	return 1;
}
int NanoVGRenderer::getTextureSize(int image, int* w, int* h) {
	auto img = getTexture(image);
	if (img == nullptr) {
		return 0;
	}

	*w = img->width;
	*h = img->height;

	return 1;
}
NanoVGRenderer::DrawCall* NanoVGRenderer::addDrawCall() {
	_drawCalls.emplace_back();
	return &_drawCalls.back();
}

size_t NanoVGRenderer::addUniformData(size_t num) {
	nanovg_draw_data data;
	memset(&data, 0, sizeof(data));
	// Push an unitialized struct into the vector but set the viewport here since that is the same for all elements
	data.viewSize = { i2fl(_viewport.x), i2fl(_viewport.y) };

	auto current = _uniformData.size();
	_uniformData.resize(current + num, data);
	return current;
}

size_t NanoVGRenderer::addVertices(const NVGvertex* vert, size_t num) {
	auto offset = _vertices.size();
	_vertices.insert(_vertices.end(), vert, vert + num);
	return offset;
}

size_t NanoVGRenderer::addVertices(size_t num) {
	auto offset = _vertices.size();
	_vertices.resize(offset + num);
	return offset;
}

size_t NanoVGRenderer::addPaths(size_t num) {
	auto offset = _paths.size();
	_paths.resize(offset + num);
	return offset;
}

bool NanoVGRenderer::convertPaint(graphics::nanovg_draw_data* frag,
								  NVGpaint* paint,
								  NVGscissor* scissor,
								  float width,
								  float fringe,
								  float strokeThr) {
	float invxform[6];

	frag->innerCol = colorToVec4(premulColor(paint->innerColor));
	frag->outerCol = colorToVec4(premulColor(paint->outerColor));

	if (scissor->extent[0] < -0.5f || scissor->extent[1] < -0.5f) {
		memset(&frag->scissorMat, 0, sizeof(frag->scissorMat));
		frag->scissorExt.x = 1.0f;
		frag->scissorExt.y = 1.0f;
		frag->scissorScale.x = 1.0f;
		frag->scissorScale.y = 1.0f;
	} else {
		nvgTransformInverse(invxform, scissor->xform);
		xformToMat3x4(frag->scissorMat, invxform);

		frag->scissorExt.x = scissor->extent[0];
		frag->scissorExt.y = scissor->extent[1];
		frag->scissorScale.x =
			sqrtf(scissor->xform[0] * scissor->xform[0] + scissor->xform[2] * scissor->xform[2]) / fringe;
		frag->scissorScale.y =
			sqrtf(scissor->xform[1] * scissor->xform[1] + scissor->xform[3] * scissor->xform[3]) / fringe;
	}

	memcpy(&frag->extent, paint->extent, sizeof(frag->extent));
	frag->strokeMult = (width * 0.5f + fringe * 0.5f) / fringe;
	frag->strokeThr = strokeThr;

	if (paint->image != 0) {
		auto tex = getTexture(paint->image);
		if (tex == nullptr) {
			return false;
		}
		if ((tex->flags & NVG_IMAGE_FLIPY) != 0) {
			float flipped[6];
			nvgTransformScale(flipped, 1.0f, -1.0f);
			nvgTransformMultiply(flipped, paint->xform);
			nvgTransformInverse(invxform, flipped);
		} else {
			nvgTransformInverse(invxform, paint->xform);
		}
		frag->type = NanoVGShaderType::FillImage;

		if (tex->type == NVG_TEXTURE_RGBA) {
			frag->texType = (tex->flags & NVG_IMAGE_PREMULTIPLIED) ? 0 : 1;
		} else {
			frag->texType = 2;
		}
		//		printf("frag->texType = %d\n", frag->texType);
	} else {
		frag->type = NanoVGShaderType::FillGradient;
		frag->radius = paint->radius;
		frag->feather = paint->feather;
		nvgTransformInverse(invxform, paint->xform);
	}

	xformToMat3x4(frag->paintMat, invxform);

	auto tex = getTexture(paint->image);
	if (tex != nullptr) {
		// Since textures may be stored in texture arrays we need to pass the index of the image into the shader
		frag->texArrayIndex = bm_get_array_index(tex->bitmap);
	}

	return true;
}

NanoVGRenderer::Image* NanoVGRenderer::getTexture(int id) {
	auto iter = _textureMap.find(id);
	if (iter == _textureMap.end()) {
		return nullptr;
	}
	return &iter->second;
}

void NanoVGRenderer::drawTriangles(const DrawCall& call) {
	GR_DEBUG_SCOPE("Draw triangles");
	TRACE_SCOPE(tracing::NanoVGDrawTriangles);

	auto mat = _trianglesMaterial;
	materialSetTexture(mat, call.image);

	gr_bind_uniform_buffer(uniform_block_type::NanoVGData, _uniformBuffer.getAlignerElementOffset(call.uniformIndex),
	                       sizeof(nanovg_draw_data), _uniformBuffer.bufferHandle());

	gr_render_nanovg(&mat, PRIM_TYPE_TRIS, &_vertexLayout, call.triangleOffset, call.triangleCount, _vertexBuffer);
}
void NanoVGRenderer::drawFill(const DrawCall& call) {
	GR_DEBUG_SCOPE("Draw fill");
	TRACE_SCOPE(tracing::NanoVGDrawFill);

	auto mat = _fillShapeMaterial;
	mat.set_texture_map(TM_BASE_TYPE, -1);

	gr_bind_uniform_buffer(uniform_block_type::NanoVGData, _uniformBuffer.getAlignerElementOffset(call.uniformIndex),
	                       sizeof(nanovg_draw_data), _uniformBuffer.bufferHandle());

	auto pathOffset = call.pathOffset;
	for (size_t i = 0; i < call.pathCount; ++i) {
		gr_render_nanovg(&mat,
						 PRIM_TYPE_TRISTRIP,
						 &_vertexLayout,
						 _paths[pathOffset + i].fillOffset,
						 _paths[pathOffset + i].fillCount,
						 _vertexBuffer);
	}

	mat = _fillAntiAliasMaterial;
	materialSetTexture(mat, call.image);
	gr_bind_uniform_buffer(uniform_block_type::NanoVGData,
	                       _uniformBuffer.getAlignerElementOffset(call.uniformIndex + 1), sizeof(nanovg_draw_data),
	                       _uniformBuffer.bufferHandle());

	// Draw fringes
	for (size_t i = 0; i < call.pathCount; ++i) {
		gr_render_nanovg(&mat,
						 PRIM_TYPE_TRISTRIP,
						 &_vertexLayout,
						 _paths[pathOffset + i].strokeOffset,
						 _paths[pathOffset + i].strokeCount,
						 _vertexBuffer);
	}

	mat = _fillFillMaterial;
	materialSetTexture(mat, call.image);

	gr_render_nanovg(&mat, PRIM_TYPE_TRIS, &_vertexLayout, call.triangleOffset, call.triangleCount, _vertexBuffer);
}
void NanoVGRenderer::drawConvexFill(const DrawCall& call) {
	GR_DEBUG_SCOPE("Draw convex fill");
	TRACE_SCOPE(tracing::NanoVGDrawConvexFill);

	auto mat = _triangleFillMaterial;
	materialSetTexture(mat, call.image);
	gr_bind_uniform_buffer(uniform_block_type::NanoVGData, _uniformBuffer.getAlignerElementOffset(call.uniformIndex),
	                       sizeof(nanovg_draw_data), _uniformBuffer.bufferHandle());

	auto pathOffset = call.pathOffset;
	for (size_t i = 0; i < call.pathCount; ++i) {
		gr_render_nanovg(&mat,
						 PRIM_TYPE_TRIFAN,
						 &_vertexLayout,
						 _paths[pathOffset + i].fillOffset,
						 _paths[pathOffset + i].fillCount,
						 _vertexBuffer);
	}

	mat = _triangleStrokeMaterial;
	materialSetTexture(mat, call.image);
	// Draw fringes
	for (size_t i = 0; i < call.pathCount; ++i) {
		gr_render_nanovg(&mat,
						 PRIM_TYPE_TRISTRIP,
						 &_vertexLayout,
						 _paths[pathOffset + i].strokeOffset,
						 _paths[pathOffset + i].strokeCount,
						 _vertexBuffer);
	}
}
void NanoVGRenderer::drawStroke(const DrawCall& call) {
	GR_DEBUG_SCOPE("Draw stroke");
	TRACE_SCOPE(tracing::NanoVGDrawStroke);

	auto mat = _strokeFillMaterial;
	materialSetTexture(mat, call.image);
	gr_bind_uniform_buffer(uniform_block_type::NanoVGData,
	                       _uniformBuffer.getAlignerElementOffset(call.uniformIndex + 1), sizeof(nanovg_draw_data),
	                       _uniformBuffer.bufferHandle());

	auto pathOffset = call.pathOffset;

	// Fill the stroke base without overlap
	for (size_t i = 0; i < call.pathCount; ++i) {
		gr_render_nanovg(&mat,
						 PRIM_TYPE_TRISTRIP,
						 &_vertexLayout,
						 _paths[pathOffset + i].strokeOffset,
						 _paths[pathOffset + i].strokeCount,
						 _vertexBuffer);
	}

	// Draw anti-aliased pixels.
	gr_bind_uniform_buffer(uniform_block_type::NanoVGData, _uniformBuffer.getAlignerElementOffset(call.uniformIndex),
	                       sizeof(nanovg_draw_data), _uniformBuffer.bufferHandle());
	mat = _strokeAntiaiasMaterial;
	materialSetTexture(mat, call.image);
	for (size_t i = 0; i < call.pathCount; ++i) {
		gr_render_nanovg(&mat,
						 PRIM_TYPE_TRISTRIP,
						 &_vertexLayout,
						 _paths[pathOffset + i].strokeOffset,
						 _paths[pathOffset + i].strokeCount,
						 _vertexBuffer);
	}

	// Clear stencil buffer.
	mat = _strokeClearStencilMaterial;
	materialSetTexture(mat, call.image);
	for (size_t i = 0; i < call.pathCount; ++i) {
		gr_render_nanovg(&mat,
						 PRIM_TYPE_TRISTRIP,
						 &_vertexLayout,
						 _paths[pathOffset + i].strokeOffset,
						 _paths[pathOffset + i].strokeCount,
						 _vertexBuffer);
	}
}
void NanoVGRenderer::materialSetTexture(nanovg_material& mat, int nvgHandle) {
	auto tex = getTexture(nvgHandle);
	if (tex != nullptr) {
		mat.set_texture_map(TM_BASE_TYPE, tex->bitmap);
		if (tex->type == NVG_TEXTURE_ALPHA) {
			mat.set_texture_type(material::TEX_TYPE_AABITMAP);
		}
	} else {
		mat.set_texture_map(TM_BASE_TYPE, -1);
	}
}

}
}