File: curve.cpp

package info (click to toggle)
freespace2 24.0.2%2Brepack-1
  • links: PTS, VCS
  • area: non-free
  • in suites: trixie
  • size: 43,188 kB
  • sloc: cpp: 583,107; ansic: 21,729; python: 1,174; sh: 464; makefile: 248; xml: 181
file content (233 lines) | stat: -rw-r--r-- 6,624 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

#include "math/curve.h"
#include "parse/parselo.h"

SCP_vector<Curve> Curves;

int curve_get_by_name(SCP_string& in_name) {
	for (int i = 0; i < (int)Curves.size(); i++) {
		if (lcase_equal(Curves[i].name, in_name))
			return i;
	}

	return -1;
}

void parse_curve_table(const char* filename) {
	try
	{
		read_file_text(filename, CF_TYPE_TABLES);
		reset_parse();

		required_string("#Curves");

		while (optional_string("$Name:")) {
			SCP_string name;
			stuff_string(name, F_NAME);

			int index = curve_get_by_name(name);

			if (index < 0) {
				Curve curv = Curve(name);
				curv.ParseData();
				Curves.push_back(curv);
			} else {
				Curves[index].ParseData();
			}
		}
	}
	catch (const parse::ParseException& e)
	{
		mprintf(("TABLES: Unable to parse '%s'!  Error message = %s.\n", filename, e.what()));
	}
}

void fill_default_curves() {
	for (int i = 2; i < 6; i++) {
		for (int rev = 0; rev < 2; rev++) {
			SCP_string name("EaseIn");
			switch (i) {
			case 2: name += "Quad"; break;
			case 3: name += "Cubic"; break;
			case 4: name += "Quart"; break;
			case 5: name += "Quint"; break;
			}
			if (rev)
				name += "Rev";

			Curves.emplace_back(name);
			Curves.back().keyframes.push_back(curve_keyframe{ vec2d { 0.0f, rev ? 1.0f : 0.0f}, CurveInterpFunction::Polynomial, (float)i, 1.0f });
			Curves.back().keyframes.push_back(curve_keyframe{ vec2d { 1.0f, rev ? 0.0f : 1.0f}, CurveInterpFunction::Constant, 0.0f, 0.0f });

			name = "EaseOut";
			switch (i) {
			case 2: name += "Quad"; break;
			case 3: name += "Cubic"; break;
			case 4: name += "Quart"; break;
			case 5: name += "Quint"; break;
			}
			if (rev)
				name += "Rev";

			Curves.emplace_back(name);
			Curves.back().keyframes.push_back(curve_keyframe{ vec2d { 0.0f, rev ? 1.0f : 0.0f}, CurveInterpFunction::Polynomial, (float)i, -1.0f });
			Curves.back().keyframes.push_back(curve_keyframe{ vec2d { 1.0f, rev ? 0.0f : 1.0f}, CurveInterpFunction::Constant, 0.0f, 0.0f });

			name = "EaseInOut";
			switch (i) {
			case 2: name += "Quad"; break;
			case 3: name += "Cubic"; break;
			case 4: name += "Quart"; break;
			case 5: name += "Quint"; break;
			}
			if (rev)
				name += "Rev";

			Curves.emplace_back(name);
			Curves.back().keyframes.push_back(curve_keyframe{ vec2d { 0.0f, rev ? 1.0f : 0.0f}, CurveInterpFunction::Polynomial, (float)i, 1.0f });
			Curves.back().keyframes.push_back(curve_keyframe{ vec2d { 0.5f, 0.5f}, CurveInterpFunction::Polynomial, (float)i, -1.0f });
			Curves.back().keyframes.push_back(curve_keyframe{ vec2d { 1.0f, rev ? 0.0f : 1.0f}, CurveInterpFunction::Constant, 0.0f, 0.0f });
		}
	}
}

void curves_init() {

	Curves.clear();
	fill_default_curves();

	if (cf_exists_full("curves.tbl", CF_TYPE_TABLES))
		parse_curve_table("curves.tbl");

	parse_modular_table(NOX("*-crv.tbm"), parse_curve_table);
}

Curve::Curve(SCP_string in_name)
{
	name = std::move(in_name);
}

void Curve::ParseData()
{
	keyframes.clear();

	required_string("$Keyframes:");
	do
	{
		bool valid_keyframe = true;
		curve_keyframe kframe;
		stuff_parenthesized_vec2d(&kframe.pos);
		required_string(":");

		SCP_string type;
		stuff_string(type, F_NAME, ",");

		if (type == "Constant") {
			kframe.interp_func = CurveInterpFunction::Constant;
		} else if (type == "Linear") {
			kframe.interp_func = CurveInterpFunction::Linear;
		} else if (type == "Polynomial") {
			kframe.interp_func = CurveInterpFunction::Polynomial;

			required_string(",");
			if (stuff_float(&kframe.param1)) {
				bool ease_in;
				stuff_boolean(&ease_in);
				if (ease_in)
					kframe.param2 = 1.0f;
				else
					kframe.param2 = -1.0f;
			} else {
				kframe.param2 = 1.0;
			}
		} else if (type == "Circular") {
			kframe.interp_func = CurveInterpFunction::Circular;

			if (optional_string(",")) {
				bool ease_in;
				stuff_boolean(&ease_in);
				if (ease_in)
					kframe.param2 = 1.0f;
				else
					kframe.param2 = -1.0f;
			} else {
				kframe.param2 = 1.0f;
			}
		} else {
			int index = curve_get_by_name(type);

			if (index < 0) {
				Warning(LOCATION, "Unrecognized interpolation function '%s' used in '%s'. Remember that any other curves used in this curve must have been defined before this one.", 
					type.c_str(), name.c_str());
				valid_keyframe = false;
			} else {
				kframe.interp_func = CurveInterpFunction::Curve;
				kframe.param1 = (float)index;
			}
		}

		if (valid_keyframe && keyframes.size() > 0 && kframe.pos.x < keyframes.back().pos.x) {
			Warning(LOCATION, "The keyframe (%f,%f) of Curve '%s' has a smaller x value than the previous keyframe. They must increase in order. Skipping this keyframe...", 
				kframe.pos.x, kframe.pos.y, name.c_str());
		} else {
			keyframes.push_back(kframe);
		}

		if (optional_string("#End"))
			return;

	} while (!check_for_string("$Name:"));

	if (keyframes.back().pos.x < 1.0f) {
		Warning(LOCATION, "The last keyframe of Curve '%s' has an x value less then 1. A (1, 1) point has been added.", name.c_str());
		curve_keyframe kframe;
		kframe.interp_func = CurveInterpFunction::Constant;
		kframe.pos.x = 1.0f;
		kframe.pos.y = 1.0f;
		keyframes.push_back(kframe);
	}
}


float Curve::GetValue(float x_val) const {
	const curve_keyframe* kframe = &keyframes[0];
	const vec2d* next_pos = &kframe->pos;
	for (size_t i = 0; i < keyframes.size(); i++) {
		kframe = &keyframes[i];
		if (x_val < kframe->pos.x) {
			if (i == 0) {
				return kframe->pos.y; // 'stretch' the initial y value back to -infinity
			} else {
				next_pos = &kframe->pos;
				kframe = &keyframes[i-1];
				break;
			}
		}

		if (i == keyframes.size() - 1) {
			return kframe->pos.y; // 'stretch' the final y value forward to infinity
		}
	}

	float t = (x_val - kframe->pos.x) / (next_pos->x - kframe->pos.x);
	float out;
	switch (kframe->interp_func) {
		case CurveInterpFunction::Constant:
			return kframe->pos.y;
		case CurveInterpFunction::Linear:
			return kframe->pos.y + t * (next_pos->y - kframe->pos.y);
		case CurveInterpFunction::Polynomial:
			out = kframe->param2 > 0.0f ? powf(t, kframe->param1) : (1 - powf(1 - t, kframe->param1));
			return kframe->pos.y + out * (next_pos->y - kframe->pos.y);
		case CurveInterpFunction::Circular:
			out = kframe->param2 > 0.0f ? 1.0f - sqrtf(1 - powf(t, 2.0f)) : sqrtf(1.0f - powf(t - 1.0f, 2.0f));
			return kframe->pos.y + out * (next_pos->y - kframe->pos.y);
		case CurveInterpFunction::Curve:
			// add 0.5 to ensure this behaves like rounding
			out = Curves[(int)(kframe->param1 + 0.5f)].GetValue(t);
			return kframe->pos.y + out * (next_pos->y - kframe->pos.y);
		default:
			UNREACHABLE("Unrecognized curve function");
			return 0.0f;
	}
}