1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
/*
* Copyright (C) Volition, Inc. 1999. All rights reserved.
*
* All source code herein is the property of Volition, Inc. You may not sell
* or otherwise commercially exploit the source or things you created based on the
* source.
*
*/
#ifndef _FLOATING_H
#define _FLOATING_H
#include <cmath>
#include <cfloat>
#include <limits>
extern float frand();
extern int rand_chance(float frametime, float chance = 1.0f);
float frand_range(float min, float max);
// determine if a floating point number is NaN (Not a Number)
inline bool fl_is_nan(float fl) {
return std::isnan(fl);
}
// Handy macros to prevent type casting all over the place
#define fl_sqrt(fl) sqrtf(fl)
#define fl_isqrt(fl) (1.0f/sqrtf(fl))
#define fl_abs(fl) fabsf(fl)
#define i2fl(i) ((float)(i))
#define fl2i(fl) ((int)(fl))
#define fl2ir(fl) ((int)(fl + ((fl < 0.0f) ? -0.5f : 0.5f)))
#define flceil(fl) (int)ceil(fl)
#define flfloor(fl) (int)floor(fl)
#define f2fl(fx) ((float)(fx)/65536.0f)
#define f2d(fx) (((double)(fx))/65536.0)
#define fl2f(fl) (int)((fl)*65536.0f)
#define fl_tan(fl) tanf(fl)
// convert a measurement in degrees to radians
#define fl_radians(fl) ((float)((fl) * (PI / 180.0f)))
// convert a measurement in radians to degrees
#define fl_degrees(fl) ((float)((fl) * (180.0f / PI)))
// use this instead of:
// for: (int)floor(x+0.5f) use fl_round_2048(x)
// (int)ceil(x-0.5f) use fl_round_2048(x)
// (int)floor(x-0.5f) use fl_round_2048(x-1.0f)
// (int)floor(x) use fl_round_2048(x-0.5f)
// for values in the range -2048 to 2048
// use this instead of:
// for: (int)floor(x+0.5f) use fl_round_2048(x)
// (int)ceil(x-0.5f) use fl_round_2048(x)
// (int)floor(x-0.5f) use fl_round_2048(x-1.0f)
// (int)floor(x) use fl_round_2048(x-0.5f)
// for values in the range -2048 to 2048
/*
extern const float *p_fl_magic;
inline int fl_round_2048( float x )
{
double tmp_quad;
tmp_quad = x + *p_fl_magic;
return *((int *)&tmp_quad);
}
inline float fl_sqrt( float x)
{
float retval;
_asm fld x
_asm fsqrt
_asm fstp retval
return retval;
}
float fl_isqrt( float x )
{
float retval;
_asm fld x
_asm fsqrt
_asm fstp retval
return 1.0f / retval;
}
*/
// sees if a floating point number is within a certain threshold (by default, epsilon) of zero
inline bool fl_near_zero(float a, float e = std::numeric_limits<float>::epsilon())
{
return a < e && a > -e;
}
// sees if two floating point numbers are approximately equal, taking into account the argument magnitudes
// see commit c62037
// and see also this article, because fl_equal may need to be rewritten if it is recruited into more demanding situations:
// https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
inline bool fl_equal(float a, float b)
{
return fl_abs(a - b) <= FLT_EPSILON * std::max({ 1.0f, fl_abs(a), fl_abs(b) });
}
// sees if two floating point numbers are approximately equal, with a user-specifiable epsilon
inline bool fl_equal(float a, float b, float epsilon)
{
return fl_abs(a - b) <= epsilon;
}
// rounds off a floating point number to a multiple of some number
extern float fl_roundoff(float x, int multiple);
const float GOLDEN_RATIO = 0.618033989f;
float golden_ratio_rand();
// clamps the input to -1, 1 to avoid floating point error putting it outside that range
float acosf_safe(float x);
float asinf_safe(float x);
#endif
|