File: objectdock.cpp

package info (click to toggle)
freespace2 24.0.2%2Brepack-1
  • links: PTS, VCS
  • area: non-free
  • in suites: trixie
  • size: 43,188 kB
  • sloc: cpp: 583,107; ansic: 21,729; python: 1,174; sh: 464; makefile: 248; xml: 181
file content (1094 lines) | stat: -rw-r--r-- 35,446 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
/*
 * Created by Ian "Goober5000" Warfield for the FreeSpace2 Source Code Project.
 * You may not sell or otherwise commercially exploit the source or things you
 * create based on the source.
 */ 



#include "math/bitarray.h"
#include "math/vecmat.h"
#include "mission/missionparse.h"
#include "object/object.h"
#include "object/objectdock.h"
#include "ship/ship.h"




// helper prototypes

void dock_evaluate_tree(object *objp, dock_function_info *infop, void (*function)(object *, dock_function_info *), ubyte *visited_bitstring);
void dock_move_docked_children_tree(object *objp, object *parent_objp);
void dock_count_total_docked_objects_helper(object *objp, dock_function_info *infop);
void dock_check_find_docked_object_helper(object *objp, dock_function_info *infop);
void dock_calc_docked_mins_maxs_helper(object *objp, dock_function_info *infop);
void dock_calc_docked_center_of_mass_helper(object *objp, dock_function_info *infop);
void dock_calc_total_docked_mass_helper(object *objp, dock_function_info *infop);
void dock_calc_max_cross_sectional_radius_squared_perpendicular_to_line_helper(object *objp, dock_function_info *infop);
void dock_calc_max_semilatus_rectum_squared_parallel_to_directrix_helper(object *objp, dock_function_info *infop);
void dock_find_max_speed_helper(object *objp, dock_function_info *infop);
void dock_find_max_fspeed_helper(object *objp, dock_function_info *infop);
void dock_calc_total_moi_helper(object* objp, dock_function_info* infop);

// management prototypes

bool dock_check_assume_hub();
object *dock_get_hub(object *objp);

void dock_add_instance(object *objp, int dockpoint, object *other_objp);
void dock_remove_instance(object *objp, object *other_objp);
dock_instance *dock_find_instance(object *objp, object *other_objp);
dock_instance *dock_find_instance(object *objp, int dockpoint);
int dock_count_instances(object *objp);



object *dock_get_first_docked_object(object *objp)
{
	Assert(objp != NULL);

	// are we docked?
	if (!object_is_docked(objp))
		return NULL;

	return objp->dock_list->docked_objp;
}

bool dock_check_docked_one_on_one(object *objp)
{
	Assert(objp != NULL);

	// we must be docked
	if (!object_is_docked(objp))
		return false;
	
	// our dock list must contain only one object
	if (objp->dock_list->next != NULL)
		return false;

	// the other guy's dock list must contain only one object
	if (dock_get_first_docked_object(objp)->dock_list->next != NULL)
		return false;

	// debug check to make sure that we're docked to each other
	Assert(objp == dock_get_first_docked_object(objp)->dock_list->docked_objp);
	
	// success
	return true;
}

int dock_count_direct_docked_objects(object *objp)
{
	Assert(objp != NULL);
	return dock_count_instances(objp);
}

int dock_count_total_docked_objects(object *objp)
{
	Assert(objp != NULL);

	dock_function_info dfi;

	dock_evaluate_all_docked_objects(objp, &dfi, dock_count_total_docked_objects_helper);

	return dfi.maintained_variables.int_value;
}

bool dock_check_find_direct_docked_object(object *objp, object *other_objp)
{
	Assert(objp != NULL);
	Assert(other_objp != NULL);

	return (dock_find_instance(objp, other_objp) != NULL);
}

bool dock_check_find_docked_object(object *objp, object *other_objp)
{
	Assert(objp != nullptr);
	Assert(objp->signature > 0);
	Assert(other_objp != nullptr);
	Assert(other_objp->signature > 0);


	if (!(objp != nullptr && objp->signature > 0))
		return false;
	if (!(other_objp != nullptr && other_objp->signature > 0))
		return false;

	dock_function_info dfi;
	dfi.parameter_variables.objp_value = other_objp;

	dock_evaluate_all_docked_objects(objp, &dfi, dock_check_find_docked_object_helper);

	return dfi.maintained_variables.bool_value;
}

object *dock_find_object_at_dockpoint(object *objp, int dockpoint)
{
	Assert(objp != NULL);

	dock_instance *result = dock_find_instance(objp, dockpoint);
	
	if (result == NULL)
		return NULL;
	else
		return result->docked_objp;
}

int dock_find_dockpoint_used_by_object(object *objp, object *other_objp)
{
	Assert(objp != NULL);
	Assert(other_objp != NULL);

	dock_instance *result = dock_find_instance(objp, other_objp);
	
	if (result == NULL)
		return -1;
	else
		return result->dockpoint_used;
}

/**
 * Get the offset of the actual center of the docked ship models for the purposes of warping (which may not be the specified center).
 * Note, these are LOCAL coordinates in relation to objp, not world coordinates.
 * See also ship_class_get_actual_center() in ship.cpp
 */
void dock_calc_docked_actual_center(vec3d *dest, object *objp)
{
	Assert(dest != nullptr);
	Assert(objp != nullptr);

	vec3d overall_mins, overall_maxs;
	dock_calc_docked_extents(&overall_mins, &overall_maxs, objp);

	// c.f. ship_class_get_actual_center() in ship.cpp
	dest->xyz.x = (overall_maxs.xyz.x + overall_mins.xyz.x) * 0.5f;
	dest->xyz.y = (overall_maxs.xyz.y + overall_mins.xyz.y) * 0.5f;
	dest->xyz.z = (overall_maxs.xyz.z + overall_mins.xyz.z) * 0.5f;
}

/**
* Get the mins and maxs of the entire assembly of docked ship models.
* Note, these are LOCAL coordinates in relation to objp, not world coordinates.
*/
void dock_calc_docked_extents(vec3d *mins, vec3d *maxs, object *objp)
{
	Assert(mins != nullptr);
	Assert(maxs != nullptr);
	Assert(objp != nullptr);

	*mins = vmd_zero_vector;
	*maxs = vmd_zero_vector;

	// Let's calculate all mins/maxes in relation to the orientation of the main object
	// (which is expected to be the dock leader, but this technically isn't required).
	// Since the vast majority of dockpoints are aligned with an axis, this should
	// yield a much better fit of our docked bounding box.

	dock_function_info dfi;
	dfi.parameter_variables.objp_value = objp;		// the reference object for our bounding box orientation
	dfi.maintained_variables.vecp_value = mins;		// mins
	dfi.maintained_variables.vecp_value2 = maxs;	// maxs

	dock_evaluate_all_docked_objects(objp, &dfi, dock_calc_docked_mins_maxs_helper);
}

float dock_calc_docked_center_of_mass(vec3d *dest, object *objp)
{
	Assertion(dest != nullptr, "dock_calc_docked_center_of_mass, invalid dest");
	Assertion(objp != nullptr, "dock_calc_docked_center_of_mass, invalid objp");

	vm_vec_zero(dest);

	dock_function_info dfi;
	dfi.maintained_variables.vecp_value = dest;

	dock_evaluate_all_docked_objects(objp, &dfi, dock_calc_docked_center_of_mass_helper);

	// overall center of mass = weighted sum of centers of mass divided by total mass
	float total_mass = dfi.maintained_variables.float_value;
	vm_vec_scale(dest, (1.0f / total_mass));
	return total_mass;
}

float dock_calc_total_docked_mass(object *objp)
{
	Assertion(objp != nullptr, "dock_calc_total_docked_mass, invalid argument");

	dock_function_info dfi;
	
	dock_evaluate_all_docked_objects(objp, &dfi, dock_calc_total_docked_mass_helper);

	return dfi.maintained_variables.float_value;
}

float dock_calc_max_cross_sectional_radius_perpendicular_to_axis(object *objp, axis_type axis)
{
	Assert(objp != NULL);

	vec3d local_line_end;
	vec3d *world_line_start, world_line_end;
	dock_function_info dfi;

	// to calculate the cross-sectional radius, we need a line that will be perpendicular to the cross-section

	// the first endpoint is simply the position of the object
	world_line_start = &objp->pos;

	// the second endpoint extends in the axis direction
	vm_vec_zero(&local_line_end);
	switch(axis)
	{
		case X_AXIS:
			local_line_end.xyz.x = 1.0f;
			break;

		case Y_AXIS:
			local_line_end.xyz.y = 1.0f;
			break;

		case Z_AXIS:
			local_line_end.xyz.z = 1.0f;
			break;

		default:
			Int3();
			return 0.0f;
	}

	// move the endpoint to go through the axis of the actual object
	vm_vec_unrotate(&world_line_end, &local_line_end, &objp->orient);
	vm_vec_add2(&world_line_end, &objp->pos);

	// now we have a unit vector starting at the object's position and pointing along the chosen axis
	// (although the length doesn't matter, as it's calculated as an endless line)

	// now determine the cross-sectional radius

	// set parameters and call function for the radius squared
	dfi.parameter_variables.vecp_value = world_line_start;
	dfi.parameter_variables.vecp_value2 = &world_line_end;
	dock_evaluate_all_docked_objects(objp, &dfi, dock_calc_max_cross_sectional_radius_squared_perpendicular_to_line_helper);

	// the radius is the square root of our result
	return fl_sqrt(dfi.maintained_variables.float_value);
}

float dock_calc_max_semilatus_rectum_parallel_to_axis(object *objp, axis_type axis)
{
	Assert(objp != NULL);

	vec3d local_line_end;
	vec3d *world_line_start, world_line_end;
	dock_function_info dfi;

	// to calculate the semilatus rectum, we need a directrix that will be parallel to the axis

	// the first endpoint is simply the position of the object
	world_line_start = &objp->pos;

	// the second endpoint extends in the axis direction
	vm_vec_zero(&local_line_end);
	switch(axis)
	{
		case X_AXIS:
			local_line_end.xyz.x = 1.0f;
			break;

		case Y_AXIS:
			local_line_end.xyz.y = 1.0f;
			break;

		case Z_AXIS:
			local_line_end.xyz.z = 1.0f;
			break;

		default:
			Int3();
			return 0.0f;
	}

	// move the endpoint to go through the axis of the actual object
	vm_vec_unrotate(&world_line_end, &local_line_end, &objp->orient);
	vm_vec_add2(&world_line_end, &objp->pos);

	// now we have a unit vector starting at the object's position and pointing along the chosen axis
	// (although the length doesn't matter, as it's calculated as an endless line)

	// now determine the semilatus rectum

	// set parameters and call function for the semilatus rectum squared
	dfi.parameter_variables.vecp_value = world_line_start;
	dfi.parameter_variables.vecp_value2 = &world_line_end;
	dock_evaluate_all_docked_objects(objp, &dfi, dock_calc_max_semilatus_rectum_squared_parallel_to_directrix_helper);

	// the semilatus rectum is the square root of our result
	return fl_sqrt(dfi.maintained_variables.float_value);
}

float dock_calc_docked_fspeed(object *objp)
{
	Assert(objp != NULL);

	// *sigh*... the docked fspeed is simply the max fspeed of all docked objects
	dock_function_info dfi;
	dock_evaluate_all_docked_objects(objp, &dfi, dock_find_max_fspeed_helper);
	return dfi.maintained_variables.float_value;
}

float dock_calc_docked_speed(object *objp)
{
	Assert(objp != NULL);

	// ditto with speed
	dock_function_info dfi;
	dock_evaluate_all_docked_objects(objp, &dfi, dock_find_max_speed_helper);
	return dfi.maintained_variables.float_value;
}

// Calculates the total moi (NOT INVERTED) of a docked assembly
//		dest		=>		output matrix
//		objp		=>		one of the objects in the assembly
//		center 		=>		center of mass of the assembly in world coords ( use dock_calc_docked_center_of_mass to find it )
// Returns whether or not was successful (in case some or all of the matrices were uninvertable or too close to it)
// If not successful, dest will have NaN or infinity, use at your own risk!
bool dock_calc_total_moi(matrix* dest, object* objp, vec3d *center)
{
	Assertion((dest != nullptr) && (objp != nullptr) && (center != nullptr), "dock_calc_total_moi invalid argument(s)");

	*dest = vmd_zero_matrix;

	dock_function_info dfi;
	dfi.parameter_variables.vecp_value = center;
	dfi.maintained_variables.matrix_value = dest;

	dock_evaluate_all_docked_objects(objp, &dfi, dock_calc_total_moi_helper);

	return is_valid_matrix(dest);
}

// This ship is the only ship NOT moved by docking AI to keep everyone together
// All the other ships in the tree will update based on this one
// Since this is based on current speed don't expect it to remain consistent between frames
object* dock_find_dock_root(object *objp)
{
	Assertion(objp != nullptr, "dock_find_dock_root invalid argument");

	dock_function_info dfi;
	object* fastest_objp;

	dfi.maintained_variables.objp_value = nullptr;

	// find the object with the highest speed
	dock_evaluate_all_docked_objects(objp, &dfi, dock_find_max_speed_helper);
	fastest_objp = dfi.maintained_variables.objp_value;

	// if we have no max speed, just use the given one
	if (fastest_objp == nullptr)
		fastest_objp = objp;

	return fastest_objp;
}

void dock_calculate_and_apply_whack_docked_object(vec3d* impulse, const vec3d* world_hit_pos, object* objp)
{
	Assertion((objp != nullptr) && (impulse != nullptr) && (world_hit_pos != nullptr),
		"dock_whack_docked_object invalid argument(s)");

	//	Detect null vector.
	if (whack_below_limit(impulse))
		return;

	// calc overall world center-of-mass of all ships
	vec3d world_center_of_mass;
	float total_mass = dock_calc_docked_center_of_mass(&world_center_of_mass, objp);

	vec3d hit_pos;
	// the new hitpos is the vector from world center-of-mass to world hitpos
	vm_vec_sub(&hit_pos, world_hit_pos, &world_center_of_mass);

	matrix moi, inv_moi;
	// calculate the effective inverse MOI for the docked composite object about its center of mass
	if (dock_calc_total_moi(&moi, objp, &world_center_of_mass)) {
		vm_inverse_matrix(&inv_moi, &moi);
	}
	else { // Just in case anything funky happened (usually due to some of the input matrices being non-invertable or too close to it)
		inv_moi = vmd_zero_matrix;
	}

	// calculate the angular_impulse about the center of mass in world coords
	vec3d angular_impulse;
	vm_vec_cross(&angular_impulse, &hit_pos, impulse);

	// calculate the change in rotvel caused by the whack in world coords
	vec3d delta_rotvel;
	vm_vec_rotate(&delta_rotvel, &angular_impulse, &inv_moi);

	// get the total change in vel for the entire docked assembly
	vec3d center_mass_delta_vel = *impulse * (1.0f / total_mass);

	// get the root of the dock tree, so that updating this velocity will update the rest of the tree
	object* root_objp;
	root_objp = dock_find_dock_root(objp);

	vec3d local_delta_rotvel;

	// translate the rotvel change into the root's frame
	vm_vec_rotate(&local_delta_rotvel, &delta_rotvel, &root_objp->orient);

	// compute the root's linear vel as vel = center mass vel + world frame rotvel x relative pos
	vec3d root_delta_vel;
	vec3d rel_pos;
	vm_vec_sub(&rel_pos, &root_objp->pos, &world_center_of_mass);
	vm_vec_cross(&root_delta_vel, &delta_rotvel, &rel_pos);
	vm_vec_add2(&root_delta_vel, &center_mass_delta_vel);

	// whack it
	physics_apply_whack(vm_vec_mag(impulse),
		&root_objp->phys_info,
		&local_delta_rotvel,
		&root_delta_vel,
		&root_objp->orient);

}


// functions to deal with all docked ships anywhere
// ---------------------------------------------------------------------------------------------------------------

// universal two functions
// -----------------------

// evaluate a certain function for all docked objects
// The_Force:: If changed please change in QtFred's ShipInitialStatusDialogModel also
void dock_evaluate_all_docked_objects(object *objp, dock_function_info *infop, void (*function)(object *, dock_function_info *))
{
	Assertion((objp != nullptr) && (infop != nullptr) && (function != nullptr),
		"dock_evaluate_all_docked_objects, invalid argument(s)");

	// not docked?
	if (!object_is_docked(objp))
	{
		// call the function for just the one object
		function(objp, infop);
		return;
	}

	// we only have two objects docked
	if (dock_check_docked_one_on_one(objp))
	{
		// call the function for the first object, and return if instructed
		function(objp, infop);
		if (infop->early_return_condition) return;

		// call the function for the second object, and return if instructed
		function(objp->dock_list->docked_objp, infop);
		if (infop->early_return_condition) return;
	}

	// we have multiple objects docked and we're treating them as a hub
	else if (dock_check_assume_hub())
	{
		// get the hub
		object *hub_objp = dock_get_hub(objp);

		// call the function for the hub, and return if instructed
		function(hub_objp, infop);
		if (infop->early_return_condition) return;

		// iterate through all docked objects
		for (dock_instance *ptr = hub_objp->dock_list; ptr != NULL; ptr = ptr->next)
		{
			// call the function for this object, and return if instructed
			function(ptr->docked_objp, infop);
			if (infop->early_return_condition) return;
		}
	}

	// we have multiple objects docked and we must treat them as a tree
	else
	{
		// create a bit array to mark the objects we check
		ubyte *visited_bitstring = (ubyte *) vm_malloc(calculate_num_bytes(MAX_OBJECTS));

		// clear it
		memset(visited_bitstring, 0, calculate_num_bytes(MAX_OBJECTS));

		// start evaluating the tree
		dock_evaluate_tree(objp, infop, function, visited_bitstring);

		// destroy the bit array
		vm_free(visited_bitstring);
		visited_bitstring = NULL;
	}
}

void dock_evaluate_tree(object *objp, dock_function_info *infop, void (*function)(object *, dock_function_info *), ubyte *visited_bitstring)
{
	// make sure we haven't visited this object already
	if (get_bit(visited_bitstring, OBJ_INDEX(objp)))
		return;

	// mark as visited
	set_bit(visited_bitstring, OBJ_INDEX(objp));

	// call the function for this object, and return if instructed
	function(objp, infop);
	if (infop->early_return_condition) return;

	// iterate through all docked objects
	for (dock_instance *ptr = objp->dock_list; ptr != NULL; ptr = ptr->next)
	{
		// start another tree with the docked object as the root, and return if instructed
		dock_evaluate_tree(ptr->docked_objp, infop, function, visited_bitstring);
		if (infop->early_return_condition) return;
	}
}

// special-case functions
// ----------------------

void dock_move_docked_objects(object *objp)
{
	Assert(objp != NULL);

	if ((objp->type != OBJ_SHIP) && (objp->type != OBJ_START))
		return;

	if (!object_is_docked(objp))
		return;

	// has this object (by extension, this group of docked objects) been handled already?
	if (objp->flags[Object::Object_Flags::Docked_already_handled])
		return;

	Assert((objp->instance >= 0) && (objp->instance < MAX_SHIPS));

	dock_function_info dfi;
	object *fastest_objp;

	// in FRED, objp is the object everyone moves with
	if (Fred_running)
	{
		fastest_objp = objp;
	}
	else
	{
		fastest_objp = dock_find_dock_root(objp);;
	}

	// start a tree with that object as the parent... do NOT use the überfunction for this,
	// because we must use a tree for the parent ancestry to work correctly

	// we don't need a bit array because OF_DOCKED_ALREADY_HANDLED takes care of it
	// and must persist for the entire game frame

	// start evaluating the tree, starting with the fastest object having no parent
	dock_move_docked_children_tree(fastest_objp, NULL);
}

void dock_move_docked_children_tree(object *objp, object *parent_objp)
{
	// has this object been handled already?
	if (objp->flags[Object::Object_Flags::Docked_already_handled])
		return;

	// mark as handled
    objp->flags.set(Object::Object_Flags::Docked_already_handled);

	// if parent_objp exists
	if (parent_objp != NULL)
	{
		// move this object to align with it
		obj_move_one_docked_object(objp, parent_objp);
	}

	// iterate through all docked objects
	for (dock_instance *ptr = objp->dock_list; ptr != NULL; ptr = ptr->next)
	{
		// start another tree with the docked object as the root and this object as the parent
		dock_move_docked_children_tree(ptr->docked_objp, objp);
	}
}


// helper functions
// ----------------

void dock_count_total_docked_objects_helper(object * /*objp*/, dock_function_info *infop)
{
	// increment count
	infop->maintained_variables.int_value++;
}

void dock_check_find_docked_object_helper(object *objp, dock_function_info *infop)
{
	// if object found, set to true and break
	if (infop->parameter_variables.objp_value == objp)
	{
		infop->maintained_variables.bool_value = true;
		infop->early_return_condition = true;
	}
}

void dock_calc_docked_mins_maxs_helper(object *objp, dock_function_info *infop)
{
	polymodel *pm;
	vec3d parent_relative_mins, parent_relative_maxs;

	// find the model used by this object
	int modelnum = object_get_model(objp);
	Assert(modelnum >= 0);
	pm = model_get(modelnum);

	// special case: we are already in the correct frame of reference
	if (objp == infop->parameter_variables.objp_value)
	{
		parent_relative_mins = pm->mins;
		parent_relative_maxs = pm->maxs;
	}
	// we are not the parent object and need to do some gymnastics
	else
	{
		// get mins and maxs in world coordinates
		vec3d world_mins, world_maxs;
		vm_vec_unrotate(&world_mins, &pm->mins, &objp->orient);
		vm_vec_add2(&world_mins, &objp->pos);
		vm_vec_unrotate(&world_maxs, &pm->maxs, &objp->orient);
		vm_vec_add2(&world_maxs, &objp->pos);

		// now adjust them to be local to the parent
		vec3d temp_mins, temp_maxs;
		vm_vec_sub(&temp_mins, &world_mins, &infop->parameter_variables.objp_value->pos);
		vm_vec_rotate(&parent_relative_mins, &temp_mins, &infop->parameter_variables.objp_value->orient);
		vm_vec_sub(&temp_maxs, &world_maxs, &infop->parameter_variables.objp_value->pos);
		vm_vec_rotate(&parent_relative_maxs, &temp_maxs, &infop->parameter_variables.objp_value->orient);
	}

	// We test both points for both cases because they may have been flipped around.  However, X is still comparable to X, Y to Y, Z to Z.

	// test for overall min
	for (int i = 0; i < 3; ++i)
	{
		if (parent_relative_mins.a1d[i] < infop->maintained_variables.vecp_value->a1d[i])
			infop->maintained_variables.vecp_value->a1d[i] = parent_relative_mins.a1d[i];
		if (parent_relative_maxs.a1d[i] < infop->maintained_variables.vecp_value->a1d[i])
			infop->maintained_variables.vecp_value->a1d[i] = parent_relative_maxs.a1d[i];
	}

	// test for overall max
	for (int i = 0; i < 3; ++i)
	{
		if (parent_relative_mins.a1d[i] > infop->maintained_variables.vecp_value2->a1d[i])
			infop->maintained_variables.vecp_value2->a1d[i] = parent_relative_mins.a1d[i];
		if (parent_relative_maxs.a1d[i] > infop->maintained_variables.vecp_value2->a1d[i])
			infop->maintained_variables.vecp_value2->a1d[i] = parent_relative_maxs.a1d[i];
	}
}

void dock_calc_docked_center_of_mass_helper(object *objp, dock_function_info *infop)
{
	// add weighted object position and add mass
	vm_vec_scale_add2(infop->maintained_variables.vecp_value, &objp->pos, objp->phys_info.mass);
	infop->maintained_variables.float_value += objp->phys_info.mass;
}

void dock_calc_total_docked_mass_helper(object *objp, dock_function_info *infop)
{
	// add mass
	infop->maintained_variables.float_value += objp->phys_info.mass;
}

// What we're doing here is finding the distances between each extent of the object and the line, and then taking the
// maximum distance as the cross-sectional radius.  We're actually maintaining the square of the distance rather than
// the actual distance, as it's faster to calculate and it gives the same result in a greater-than or less-than
// comparison.  When we're done calculating everything for all objects (i.e. when we return to the parent function)
// we take the square root of the final value.
void dock_calc_max_cross_sectional_radius_squared_perpendicular_to_line_helper(object *objp, dock_function_info *infop)
{
	vec3d world_point, local_point[6], nearest;
	polymodel *pm;
	int i;
	float dist_squared;

	// line parameters
	vec3d *line_start = infop->parameter_variables.vecp_value;
	vec3d *line_end = infop->parameter_variables.vecp_value2;

	// We must find world coordinates for each of the six endpoints on the three axes of the object.  I looked up
	// which axis is front/back, left/right, and up/down, as well as which endpoint is which.  It doesn't really
	// matter, though, as all we need are the distances.

	// grab our model
	Assert(objp->type == OBJ_SHIP);
	pm = model_get(Ship_info[Ships[objp->instance].ship_info_index].model_num);

	// set up the points we want to check
	memset(local_point, 0, sizeof(vec3d) * 6);
	local_point[0].xyz.x = pm->maxs.xyz.x;	// right point (max x)
	local_point[1].xyz.x = pm->mins.xyz.x;	// left point (min x)
	local_point[2].xyz.y = pm->maxs.xyz.y;	// top point (max y)
	local_point[3].xyz.y = pm->mins.xyz.y;	// bottom point (min y)
	local_point[4].xyz.z = pm->maxs.xyz.z;	// front point (max z)
	local_point[5].xyz.z = pm->mins.xyz.z;	// rear point (min z)

	// check points
	for (i = 0; i < 6; i++)
	{
		// calculate position of point
		vm_vec_unrotate(&world_point, &local_point[i], &objp->orient);
		vm_vec_add2(&world_point, &objp->pos);

		// calculate square of distance to line
		vm_vec_dist_squared_to_line(&world_point, line_start, line_end, &nearest, &dist_squared);
	
		// update with farthest distance squared
		if (dist_squared > infop->maintained_variables.float_value)
			infop->maintained_variables.float_value = dist_squared;
	}
}

// What we're doing here is projecting each object extent onto the directrix, calculating the distance between the
// projected point and the origin, and then taking the maximum distance as the semilatus rectum.  We're actually
// maintaining the square of the distance rather than the actual distance, as it's faster to calculate and it gives
// the same result in a greater-than or less-than comparison.  When we're done calculating everything for all
// objects (i.e. when we return to the parent function) we take the square root of the final value.
void dock_calc_max_semilatus_rectum_squared_parallel_to_directrix_helper(object *objp, dock_function_info *infop)
{
	vec3d world_point, local_point[6], nearest;
	polymodel *pm;
	int i;
	float temp, dist_squared;

	// line parameters
	vec3d *line_start = infop->parameter_variables.vecp_value;
	vec3d *line_end = infop->parameter_variables.vecp_value2;

	// We must find world coordinates for each of the six endpoints on the three axes of the object.  I looked up
	// which axis is front/back, left/right, and up/down, as well as which endpoint is which.  It doesn't really
	// matter, though, as all we need are the distances.

	// grab our model
	Assert(objp->type == OBJ_SHIP);
	pm = model_get(Ship_info[Ships[objp->instance].ship_info_index].model_num);

	// set up the points we want to check
	memset(local_point, 0, sizeof(vec3d) * 6);
	local_point[0].xyz.x = pm->maxs.xyz.x;	// right point (max x)
	local_point[1].xyz.x = pm->mins.xyz.x;	// left point (min x)
	local_point[2].xyz.y = pm->maxs.xyz.y;	// top point (max y)
	local_point[3].xyz.y = pm->mins.xyz.y;	// bottom point (min y)
	local_point[4].xyz.z = pm->maxs.xyz.z;	// front point (max z)
	local_point[5].xyz.z = pm->mins.xyz.z;	// rear point (min z)

	// check points
	for (i = 0; i < 6; i++)
	{
		// calculate position of point
		vm_vec_unrotate(&world_point, &local_point[i], &objp->orient);
		vm_vec_add2(&world_point, &objp->pos);

		// find the nearest point along the line
		vm_vec_dist_squared_to_line(&world_point, line_start, line_end, &nearest, &temp);

		// find the distance squared between the origin of the line and the point on the line
		dist_squared = vm_vec_dist_squared(line_start, &nearest);
	
		// update with farthest distance squared
		if (dist_squared > infop->maintained_variables.float_value)
			infop->maintained_variables.float_value = dist_squared;
	}
}

void dock_find_max_fspeed_helper(object *objp, dock_function_info *infop)
{
	// check our fspeed against the running maximum
	if (objp->phys_info.fspeed > infop->maintained_variables.float_value)
	{
		infop->maintained_variables.float_value = objp->phys_info.fspeed;
		infop->maintained_variables.objp_value = objp;
	}
}

void dock_find_max_speed_helper(object *objp, dock_function_info *infop)
{
	// check our speed against the running maximum
	if (objp->phys_info.speed > infop->maintained_variables.float_value)
	{
		infop->maintained_variables.float_value = objp->phys_info.speed;
		infop->maintained_variables.objp_value = objp;
	}
}

void object_set_arriving_stage1_ndl_flag_helper(object *objp, dock_function_info * /*infop*/ )
{
	if (! Ships[objp->instance].flags[Ship::Ship_Flags::Dock_leader])
		Ships[objp->instance].flags.set(Ship::Ship_Flags::Arriving_stage_1_dock_follower);
}

void object_remove_arriving_stage1_ndl_flag_helper(object *objp, dock_function_info * /*infop*/ )
{
	if (! Ships[objp->instance].flags[Ship::Ship_Flags::Dock_leader])
		Ships[objp->instance].flags.remove(Ship::Ship_Flags::Arriving_stage_1_dock_follower);
}

void object_set_arriving_stage2_ndl_flag_helper(object *objp, dock_function_info * /*infop*/ )
{
	if (! Ships[objp->instance].flags[Ship::Ship_Flags::Dock_leader])
		Ships[objp->instance].flags.set(Ship::Ship_Flags::Arriving_stage_2_dock_follower);
}

void object_remove_arriving_stage2_ndl_flag_helper(object *objp, dock_function_info * /*infop*/ )
{
	if (! Ships[objp->instance].flags[Ship::Ship_Flags::Dock_leader])
		Ships[objp->instance].flags.remove(Ship::Ship_Flags::Arriving_stage_2_dock_follower);
}

void dock_calc_total_moi_helper(object* objp, dock_function_info* infop)
{
	matrix local_moi, unorient, temp, world_moi;
	// The MOI for a compound object is simply the sum of the MOI's of the parts, but
	// they all have to be with respect to the same point (the center of mass, in this case).
	// So for each part:

	// We invert the inverse MOI to get an MOI in the local frame
	if (!vm_inverse_matrix(&local_moi, &objp->phys_info.I_body_inv)) {
		// This is done on purpose to indicate a zero inv_moi
		infop->maintained_variables.matrix_value->a1d[0] = NAN;
		return;
	}

	// We calculate the inverse of the orientation matrix (which is also the transpose)
	vm_copy_transpose(&unorient, &objp->orient);

	// We calculate the world space MOI using (world MOI) = O^-1 * (local MOI) * O
	// where O is the orientation matrix (which translates between local space and world space).
	// Note that because FS stores orientation matrices transposed, objp->orient is O^-1 in this formula.
	vm_matrix_x_matrix(&temp, &objp->orient, &local_moi);
	vm_matrix_x_matrix(&world_moi, &temp, &unorient);

	// The world space MOI just calculated is about the center of mass of the part,
	// so we need to translate it to the center of mass of the whole assembly.
	// To do this we add a term corresponding to the MOI of a point mass whose position
	// is the position of the part relative to the center of mass
	vec3d* center = infop->parameter_variables.vecp_value;
	vec3d pos = objp->pos - *center;
	physics_add_point_mass_moi(&world_moi, objp->phys_info.mass, &pos);

	// Finally we add the translated world space MOI for the part to the accumulated sum
	*infop->maintained_variables.matrix_value += world_moi;
}

// ---------------------------------------------------------------------------------------------------------------
// end of über code block ----------------------------------------------------------------------------------------

// dock management functions -------------------------------------------------------------------------------------
void dock_dock_objects(object *objp1, int dockpoint1, object *objp2, int dockpoint2)
{
	Assert(objp1 != NULL);
	Assert(objp2 != NULL);

#ifndef NDEBUG
	if ((dock_find_instance(objp1, objp2) != NULL) || (dock_find_instance(objp2, objp1) != NULL))
	{
		Error(LOCATION, "Trying to dock an object that's already docked!\n");
	}

	if ((dock_find_instance(objp1, dockpoint1) != NULL) || (dock_find_instance(objp2, dockpoint2) != NULL))
	{
		Error(LOCATION, "Trying to dock to a dockpoint that's in use!\n");
	}
#endif

	// put objects on each others' dock lists 
	dock_add_instance(objp1, dockpoint1, objp2);
	dock_add_instance(objp2, dockpoint2, objp1);
}

void dock_undock_objects(object *objp1, object *objp2)
{
	Assert(objp1 != NULL);
	Assert(objp2 != NULL);

	// remove objects from each others' dock lists
	dock_remove_instance(objp1, objp2);
	dock_remove_instance(objp2, objp1);
}

void dock_undock_all(object *objp)
{
	Assert(objp != NULL);

	while (object_is_docked(objp))
	{
		object* dockee = dock_get_first_docked_object(objp);

		dock_undock_objects(objp, dockee);
	}
}

// dock list functions -------------------------------------------------------------------------------------------
bool dock_check_assume_hub()
{
	// There are several ways of handling ships docking to other ships.  Level 1, the simplest, is the one-docker, one-dockee
	// model used in retail FS2.  Level 2 is the hub model, where we stipulate that any given set of docked ships
	// includes one ship to which all other ships are docked.  No ship except for the hub ship can be docked to more than
	// one ship.  Level 3 is the daisy-chain model, where you can string ships along and make a rooted tree.
	//
	// The new code can handle level 3 ship formations, but it requires more overhead than level 2 or level 1.  (Whether
	// the additional overhead is significant or not has not been determined.)  In the vast majority of cases, level 3
	// is not needed.  So this function is provided to allow the code to optimize itself for level 2, should level 1
	// evaluation fail.

	// Determining this with a mission flag is a rather brittle design, and in any case this is not likely to be a large
	// resource sink.  Until a general-purpose tree detection routine is written, this function will always return false.
	return false;
}

object *dock_get_hub(object *objp)
{
	Assert(dock_check_assume_hub() && object_is_docked(objp));

	// if our dock list contains only one object, it must be the hub
	if (objp->dock_list->next == NULL)
	{
		return dock_get_first_docked_object(objp);
	}
	// otherwise we are the hub
	else
	{
		return objp;
	}
}

void dock_add_instance(object *objp, int dockpoint, object *other_objp)
{
	dock_instance *item;

	// create item
	item = (dock_instance *) vm_malloc(sizeof(dock_instance));
	item->dockpoint_used = dockpoint;
	item->docked_objp = other_objp;

	// prepend item to existing list
	item->next = objp->dock_list;
	objp->dock_list = item;
}

void dock_remove_instance(object *objp, object *other_objp)
{
	int found = 0;
	dock_instance *prev_ptr, *ptr;
	
	prev_ptr = NULL;
	ptr = objp->dock_list;

	// iterate until item found
	while (ptr != NULL)
	{
		// if found, exit loop
		if (ptr->docked_objp == other_objp)
		{
			found = 1;
			break;
		}

		// iterate
		prev_ptr = ptr;
		ptr = ptr->next;
	}

	// delete if found
	if (found)
	{
		// special case... found at beginning of list
		if (prev_ptr == NULL)
		{
			objp->dock_list = ptr->next;
		}
		// normal case
		else
		{
			prev_ptr->next = ptr->next;
		}

		// delete it
		vm_free(ptr);
	}
	else
	{
		// Trigger an assertion, we can recover from this one, thankfully.
		UNREACHABLE("Tried to undock an object that isn't docked!\n");
	}
}

// just free the list without worrying about undocking anything
void dock_free_dock_list(object *objp)
{
	Assert(objp != NULL);

	while (objp->dock_list != NULL)
	{
		dock_instance *ptr = objp->dock_list;
		objp->dock_list = ptr->next;
		vm_free(ptr);
	}
}

dock_instance *dock_find_instance(object *objp, object *other_objp)
{
	dock_instance *ptr = objp->dock_list;

	// iterate until item found
	while (ptr != NULL)
	{
		// if found, return it
		if (ptr->docked_objp == other_objp)
			return ptr;

		// iterate
		ptr = ptr->next;
	}

	// not found
	return NULL;
}

dock_instance *dock_find_instance(object *objp, int dockpoint)
{
	dock_instance *ptr = objp->dock_list;

	// iterate until item found
	while (ptr != NULL)
	{
		// if found, return it
		if (ptr->dockpoint_used == dockpoint)
			return ptr;

		// iterate
		ptr = ptr->next;
	}

	// not found
	return NULL;
}

int dock_count_instances(object *objp)
{
	int total_count = 0;

	// count all instances in the list
	dock_instance *ptr = objp->dock_list;
	while (ptr != NULL)
	{
		// incrememnt for this object
		total_count++;

		// iterate
		ptr = ptr->next;
	}

	// done
	return total_count;
}