File: FrameProfiler.cpp

package info (click to toggle)
freespace2 24.0.2%2Brepack-1
  • links: PTS, VCS
  • area: non-free
  • in suites: trixie
  • size: 43,188 kB
  • sloc: cpp: 583,107; ansic: 21,729; python: 1,174; sh: 464; makefile: 248; xml: 181
file content (324 lines) | stat: -rw-r--r-- 8,354 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
//
//

#include "FrameProfiler.h"

#include "globalincs/systemvars.h"

using namespace tracing;

namespace {


bool event_sorter(const trace_event& left, const trace_event& right) {
	return left.event_id < right.event_id;
}

void process_begin(SCP_vector<profile_sample>& samples, const trace_event& evt) {
	int parent = -1;
	for (int i = 0; i < (int) samples.size(); i++) {
		if (!samples[i].open_profiles) {
			continue;
		}

		samples[i].num_children++;

		if (samples[i].num_children == 1) {
			// this is our direct parent for this new sample
			parent = i;
		}
	}

	for (int i = 0; i < (int) samples.size(); i++) {
		if (!strcmp(samples[i].name.c_str(), evt.category->getName()) && samples[i].parent == parent) {
			// found the profile sample
			samples[i].open_profiles++;
			samples[i].profile_instances++;
			samples[i].start_time = evt.timestamp;
			Assert(samples[i].open_profiles == 1); // max 1 open at once
			return;
		}
	}

	// create a new profile sample
	profile_sample new_sample;

	new_sample.name = SCP_string(evt.category->getName());
	new_sample.open_profiles = 1;
	new_sample.profile_instances = 1;
	new_sample.accumulator = 0;
	new_sample.start_time = evt.timestamp;
	new_sample.children_sample_time = 0;
	new_sample.num_children = 0;
	new_sample.parent = parent;

	samples.push_back(new_sample);
}

void process_end(SCP_vector<profile_sample>& samples, const trace_event& evt) {
	uint num_parents = 0;
	int child_of = -1;

	for (int i = 0; i < (int) samples.size(); i++) {
		if (samples[i].open_profiles) {
			if (samples[i].num_children == 1) {
				child_of = i;
			}
		}
	}

	for (int i = 0; i < (int) samples.size(); i++) {
		if (!strcmp(samples[i].name.c_str(), evt.category->getName()) && samples[i].parent == child_of) {
			int inner = 0;
			int parent = -1;
			uint64_t end_time = evt.timestamp;
			samples[i].open_profiles--;

			// count all parents and find the immediate parent
			while (inner < (int) samples.size()) {
				if (samples[inner].open_profiles > 0) {
					// found a parent (any open profiles are parents)
					num_parents++;

					if (parent < 0) {
						// replace invalid parent (index)
						parent = inner;
					} else if (samples[inner].start_time >= samples[parent].start_time) {
						// replace with more immediate parent
						parent = inner;
					}
				}
				inner++;
			}

			// remember the current number of parents of the sample
			samples[i].num_parents = num_parents;

			if (parent >= 0) {
				// record this time in children_sample_time (add it in)
				samples[parent].children_sample_time += end_time - samples[i].start_time;
			}

			// save sample time in accumulator
			samples[i].accumulator += end_time - samples[i].start_time;

			break;
		}
	}

	for (int i = 0; i < (int) samples.size(); i++) {
		if (samples[i].open_profiles) {
			samples[i].num_children--;
			samples[i].num_children = MAX(samples[i].num_children, 0);
		}
	}
}


}

namespace tracing {

FrameProfiler::FrameProfiler() {

}
FrameProfiler::~FrameProfiler() {

}
void FrameProfiler::processEvent(const trace_event* event) {
	if (event->type != EventType::Complete) {
		// Only process complete events
		return;
	}

	if (event->pid == GPU_PID) {
		// Ignore GPU events since we can't display them properly
		return;
	}

	if (_mainThreadID == -1) {
		// We need the ID of the main thread to filter out multi threaded events. We just assume that the first event
		// of the main process we see is from the main thread. That should be a safe assumption.
		_mainThreadID = event->tid;
	}

	if (event->tid != _mainThreadID) {
		// Multithreaded events don't have a deterministic sequence and that confuses the old profiling system
		return;
	}

	if (event->duration == 0) {
		// Discard events with no duration
		return;
	}

	if (event->category == &MainFrame) {
		// The main frame category doesn't work right since the output is generated while we are still in that category
		return;
	}

	trace_event begin = *event;
	begin.type = EventType::Begin;
	begin.event_id = event->event_id;
	begin.duration = event->duration;

	trace_event end = *event;
	end.type = EventType::End;
	end.event_id = event->end_event_id;
	end.timestamp = event->timestamp + event->duration;
	end.duration = event->duration;

	std::lock_guard<std::mutex> vectorGuard(_eventsMutex);
	_bufferedEvents.push_back(begin);
	_bufferedEvents.push_back(end);
}

void FrameProfiler::get_profile_from_history(SCP_string& name,
											 uint64_t* avg_micro_sec,
											 uint64_t* min_micro_sec,
											 uint64_t* max_micro_sec) {
	for (int i = 0; i < (int) history.size(); i++) {
		if (history[i].name == name) {
			*avg_micro_sec = history[i].avg_micro_sec;
			*min_micro_sec = history[i].min_micro_sec;
			*max_micro_sec = history[i].max_micro_sec;
			return;
		}
	}
}
void FrameProfiler::store_profile_in_history(SCP_string& name,
											 uint64_t time) {
	float old_ratio;
	float new_ratio = 0.8f * f2fl(Frametime);

	if (new_ratio > 1.0f) {
		new_ratio = 1.0f;
	}

	old_ratio = 1.0f - new_ratio;

	for (int i = 0; i < (int) history.size(); i++) {
		if (history[i].valid && history[i].name == name) {
			// found the sample
			history[i].avg_micro_sec = (uint64_t)((history[i].avg_micro_sec * old_ratio) + (time * new_ratio));


			if (time < history[i].min_micro_sec) {
				history[i].min_micro_sec = time;
			} else {
				history[i].min_micro_sec = (uint64_t)((history[i].min_micro_sec * old_ratio) + (time * new_ratio));
			}

			if (time > history[i].max_micro_sec) {
				history[i].max_micro_sec = time;
			} else {
				history[i].max_micro_sec = (uint64_t)((history[i].max_micro_sec * old_ratio) + (time * new_ratio));
			}

			return;
		}
	}

	// add to history
	profile_sample_history new_history;

	new_history.name = name;
	new_history.valid = true;
	new_history.avg_micro_sec = new_history.min_micro_sec = new_history.max_micro_sec = time;

	history.push_back(new_history);
}
void FrameProfiler::dump_output(SCP_stringstream& out,
								uint64_t  /*start_profile_time*/,
								uint64_t  /*end_profile_time*/,
								SCP_vector<profile_sample>& samples) {
	out << "  Avg :  Min :  Max :   # : Profile Name\n";
	out << "----------------------------------------\n";

	for (int i = 0; i < (int) samples.size(); i++) {
		uint64_t sample_time;
		uint64_t avg_micro_seconds, min_micro_seconds, max_micro_seconds;

		Assert(samples[i].open_profiles == 0);

		sample_time = samples[i].accumulator - samples[i].children_sample_time;


		avg_micro_seconds = min_micro_seconds = max_micro_seconds = sample_time;

		// add new measurement into the history and get avg, min, and max
		store_profile_in_history(samples[i].name, sample_time);
		get_profile_from_history(samples[i].name,
								 &avg_micro_seconds,
								 &min_micro_seconds,
								 &max_micro_seconds);

		// format the data
		char avg[64], min[64], max[64], num[64];

		sprintf(avg, "%3.1fms", i2fl(avg_micro_seconds) * 0.000001f);
		sprintf(min, "%3.1fms", i2fl(min_micro_seconds) * 0.000001f);
		sprintf(max, "%3.1fms", i2fl(max_micro_seconds) * 0.000001f);
		sprintf(num, "%3d", samples[i].profile_instances);

		SCP_string indented_name;

		for (uint indent = 0; indent < samples[i].num_parents; indent++) {
			indented_name += ">";
		}
		indented_name += samples[i].name;

		char line[256];
		sprintf_safe(line, "%5s : %5s : %5s : %3s : ", avg, min, max, num);

		out << line + indented_name + "\n";
	}
}

SCP_string FrameProfiler::getContent() {
	return content;
}
void FrameProfiler::processFrame() {

	std::lock_guard<std::mutex> vectorGuard(_eventsMutex);

	std::sort(_bufferedEvents.begin(), _bufferedEvents.end(), event_sorter);

	SCP_stringstream stream;

	SCP_vector<profile_sample> samples;

	bool start_found = false;
	bool end_found = false;
	uint64_t start_profile_time = 0;
	uint64_t end_profile_time = 0;

	for (auto& event : _bufferedEvents) {
		if (!start_found) {
			start_profile_time = event.timestamp;
			start_found = true;
		}
		if (!end_found) {
			end_profile_time = event.timestamp;
			end_found = true;
		}

		switch (event.type) {
			case EventType::Begin:
				process_begin(samples, event);
				break;
			case EventType::End:
				process_end(samples, event);
				break;
			default:
				break;
		}
	}
	_bufferedEvents.clear();

	dump_output(stream, start_profile_time, end_profile_time, samples);

	content = stream.str();
}

}