1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
//
//
#include "FrameProfiler.h"
#include "globalincs/systemvars.h"
using namespace tracing;
namespace {
bool event_sorter(const trace_event& left, const trace_event& right) {
return left.event_id < right.event_id;
}
void process_begin(SCP_vector<profile_sample>& samples, const trace_event& evt) {
int parent = -1;
for (int i = 0; i < (int) samples.size(); i++) {
if (!samples[i].open_profiles) {
continue;
}
samples[i].num_children++;
if (samples[i].num_children == 1) {
// this is our direct parent for this new sample
parent = i;
}
}
for (int i = 0; i < (int) samples.size(); i++) {
if (!strcmp(samples[i].name.c_str(), evt.category->getName()) && samples[i].parent == parent) {
// found the profile sample
samples[i].open_profiles++;
samples[i].profile_instances++;
samples[i].start_time = evt.timestamp;
Assert(samples[i].open_profiles == 1); // max 1 open at once
return;
}
}
// create a new profile sample
profile_sample new_sample;
new_sample.name = SCP_string(evt.category->getName());
new_sample.open_profiles = 1;
new_sample.profile_instances = 1;
new_sample.accumulator = 0;
new_sample.start_time = evt.timestamp;
new_sample.children_sample_time = 0;
new_sample.num_children = 0;
new_sample.parent = parent;
samples.push_back(new_sample);
}
void process_end(SCP_vector<profile_sample>& samples, const trace_event& evt) {
uint num_parents = 0;
int child_of = -1;
for (int i = 0; i < (int) samples.size(); i++) {
if (samples[i].open_profiles) {
if (samples[i].num_children == 1) {
child_of = i;
}
}
}
for (int i = 0; i < (int) samples.size(); i++) {
if (!strcmp(samples[i].name.c_str(), evt.category->getName()) && samples[i].parent == child_of) {
int inner = 0;
int parent = -1;
uint64_t end_time = evt.timestamp;
samples[i].open_profiles--;
// count all parents and find the immediate parent
while (inner < (int) samples.size()) {
if (samples[inner].open_profiles > 0) {
// found a parent (any open profiles are parents)
num_parents++;
if (parent < 0) {
// replace invalid parent (index)
parent = inner;
} else if (samples[inner].start_time >= samples[parent].start_time) {
// replace with more immediate parent
parent = inner;
}
}
inner++;
}
// remember the current number of parents of the sample
samples[i].num_parents = num_parents;
if (parent >= 0) {
// record this time in children_sample_time (add it in)
samples[parent].children_sample_time += end_time - samples[i].start_time;
}
// save sample time in accumulator
samples[i].accumulator += end_time - samples[i].start_time;
break;
}
}
for (int i = 0; i < (int) samples.size(); i++) {
if (samples[i].open_profiles) {
samples[i].num_children--;
samples[i].num_children = MAX(samples[i].num_children, 0);
}
}
}
}
namespace tracing {
FrameProfiler::FrameProfiler() {
}
FrameProfiler::~FrameProfiler() {
}
void FrameProfiler::processEvent(const trace_event* event) {
if (event->type != EventType::Complete) {
// Only process complete events
return;
}
if (event->pid == GPU_PID) {
// Ignore GPU events since we can't display them properly
return;
}
if (_mainThreadID == -1) {
// We need the ID of the main thread to filter out multi threaded events. We just assume that the first event
// of the main process we see is from the main thread. That should be a safe assumption.
_mainThreadID = event->tid;
}
if (event->tid != _mainThreadID) {
// Multithreaded events don't have a deterministic sequence and that confuses the old profiling system
return;
}
if (event->duration == 0) {
// Discard events with no duration
return;
}
if (event->category == &MainFrame) {
// The main frame category doesn't work right since the output is generated while we are still in that category
return;
}
trace_event begin = *event;
begin.type = EventType::Begin;
begin.event_id = event->event_id;
begin.duration = event->duration;
trace_event end = *event;
end.type = EventType::End;
end.event_id = event->end_event_id;
end.timestamp = event->timestamp + event->duration;
end.duration = event->duration;
std::lock_guard<std::mutex> vectorGuard(_eventsMutex);
_bufferedEvents.push_back(begin);
_bufferedEvents.push_back(end);
}
void FrameProfiler::get_profile_from_history(SCP_string& name,
uint64_t* avg_micro_sec,
uint64_t* min_micro_sec,
uint64_t* max_micro_sec) {
for (int i = 0; i < (int) history.size(); i++) {
if (history[i].name == name) {
*avg_micro_sec = history[i].avg_micro_sec;
*min_micro_sec = history[i].min_micro_sec;
*max_micro_sec = history[i].max_micro_sec;
return;
}
}
}
void FrameProfiler::store_profile_in_history(SCP_string& name,
uint64_t time) {
float old_ratio;
float new_ratio = 0.8f * f2fl(Frametime);
if (new_ratio > 1.0f) {
new_ratio = 1.0f;
}
old_ratio = 1.0f - new_ratio;
for (int i = 0; i < (int) history.size(); i++) {
if (history[i].valid && history[i].name == name) {
// found the sample
history[i].avg_micro_sec = (uint64_t)((history[i].avg_micro_sec * old_ratio) + (time * new_ratio));
if (time < history[i].min_micro_sec) {
history[i].min_micro_sec = time;
} else {
history[i].min_micro_sec = (uint64_t)((history[i].min_micro_sec * old_ratio) + (time * new_ratio));
}
if (time > history[i].max_micro_sec) {
history[i].max_micro_sec = time;
} else {
history[i].max_micro_sec = (uint64_t)((history[i].max_micro_sec * old_ratio) + (time * new_ratio));
}
return;
}
}
// add to history
profile_sample_history new_history;
new_history.name = name;
new_history.valid = true;
new_history.avg_micro_sec = new_history.min_micro_sec = new_history.max_micro_sec = time;
history.push_back(new_history);
}
void FrameProfiler::dump_output(SCP_stringstream& out,
uint64_t /*start_profile_time*/,
uint64_t /*end_profile_time*/,
SCP_vector<profile_sample>& samples) {
out << " Avg : Min : Max : # : Profile Name\n";
out << "----------------------------------------\n";
for (int i = 0; i < (int) samples.size(); i++) {
uint64_t sample_time;
uint64_t avg_micro_seconds, min_micro_seconds, max_micro_seconds;
Assert(samples[i].open_profiles == 0);
sample_time = samples[i].accumulator - samples[i].children_sample_time;
avg_micro_seconds = min_micro_seconds = max_micro_seconds = sample_time;
// add new measurement into the history and get avg, min, and max
store_profile_in_history(samples[i].name, sample_time);
get_profile_from_history(samples[i].name,
&avg_micro_seconds,
&min_micro_seconds,
&max_micro_seconds);
// format the data
char avg[64], min[64], max[64], num[64];
sprintf(avg, "%3.1fms", i2fl(avg_micro_seconds) * 0.000001f);
sprintf(min, "%3.1fms", i2fl(min_micro_seconds) * 0.000001f);
sprintf(max, "%3.1fms", i2fl(max_micro_seconds) * 0.000001f);
sprintf(num, "%3d", samples[i].profile_instances);
SCP_string indented_name;
for (uint indent = 0; indent < samples[i].num_parents; indent++) {
indented_name += ">";
}
indented_name += samples[i].name;
char line[256];
sprintf_safe(line, "%5s : %5s : %5s : %3s : ", avg, min, max, num);
out << line + indented_name + "\n";
}
}
SCP_string FrameProfiler::getContent() {
return content;
}
void FrameProfiler::processFrame() {
std::lock_guard<std::mutex> vectorGuard(_eventsMutex);
std::sort(_bufferedEvents.begin(), _bufferedEvents.end(), event_sorter);
SCP_stringstream stream;
SCP_vector<profile_sample> samples;
bool start_found = false;
bool end_found = false;
uint64_t start_profile_time = 0;
uint64_t end_profile_time = 0;
for (auto& event : _bufferedEvents) {
if (!start_found) {
start_profile_time = event.timestamp;
start_found = true;
}
if (!end_found) {
end_profile_time = event.timestamp;
end_found = true;
}
switch (event.type) {
case EventType::Begin:
process_begin(samples, event);
break;
case EventType::End:
process_end(samples, event);
break;
default:
break;
}
}
_bufferedEvents.clear();
dump_output(stream, start_profile_time, end_profile_time, samples);
content = stream.str();
}
}
|