1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
|
///
// optional - An implementation of std::optional with extensions
// Written in 2017 by Sy Brand (tartanllama@gmail.com, @TartanLlama)
//
// Documentation available at https://tl.tartanllama.xyz/
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to the
// public domain worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software. If not, see
// <http://creativecommons.org/publicdomain/zero/1.0/>.
///
#ifndef TL_OPTIONAL_HPP
#define TL_OPTIONAL_HPP
#define TL_OPTIONAL_VERSION_MAJOR 1
#define TL_OPTIONAL_VERSION_MINOR 0
#define TL_OPTIONAL_VERSION_PATCH 0
#include <exception>
#include <functional>
#include <new>
#include <type_traits>
#include <utility>
#if (defined(_MSC_VER) && _MSC_VER == 1900)
#define TL_OPTIONAL_MSVC2015
#endif
#if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && \
!defined(__clang__))
#define TL_OPTIONAL_GCC49
#endif
#if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 4 && \
!defined(__clang__))
#define TL_OPTIONAL_GCC54
#endif
#if (defined(__GNUC__) && __GNUC__ == 5 && __GNUC_MINOR__ <= 5 && \
!defined(__clang__))
#define TL_OPTIONAL_GCC55
#endif
#if (defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ <= 9 && \
!defined(__clang__))
// GCC < 5 doesn't support overloading on const&& for member functions
#define TL_OPTIONAL_NO_CONSTRR
// GCC < 5 doesn't support some standard C++11 type traits
#define TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \
std::has_trivial_copy_constructor<T>::value
#define TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) std::has_trivial_copy_assign<T>::value
// This one will be different for GCC 5.7 if it's ever supported
#define TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
// GCC 5 < v < 8 has a bug in is_trivially_copy_constructible which breaks std::vector
// for non-copyable types
#elif (defined(__GNUC__) && __GNUC__ < 8 && \
!defined(__clang__))
#ifndef TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX
#define TL_GCC_LESS_8_TRIVIALLY_COPY_CONSTRUCTIBLE_MUTEX
namespace tl {
namespace detail {
template<class T>
struct is_trivially_copy_constructible : std::is_trivially_copy_constructible<T>{};
#ifdef _GLIBCXX_VECTOR
template<class T, class A>
struct is_trivially_copy_constructible<std::vector<T,A>>
: std::is_trivially_copy_constructible<T>{};
#endif
}
}
#endif
#define TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \
tl::detail::is_trivially_copy_constructible<T>::value
#define TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) \
std::is_trivially_copy_assignable<T>::value
#define TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
#else
#define TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) \
std::is_trivially_copy_constructible<T>::value
#define TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) \
std::is_trivially_copy_assignable<T>::value
#define TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T) std::is_trivially_destructible<T>::value
#endif
#if __cplusplus > 201103L
#define TL_OPTIONAL_CXX14
#endif
// constexpr implies const in C++11, not C++14
#if (__cplusplus == 201103L || defined(TL_OPTIONAL_MSVC2015) || \
defined(TL_OPTIONAL_GCC49))
#define TL_OPTIONAL_11_CONSTEXPR
#else
#define TL_OPTIONAL_11_CONSTEXPR constexpr
#endif
namespace tl {
#ifndef TL_MONOSTATE_INPLACE_MUTEX
#define TL_MONOSTATE_INPLACE_MUTEX
/// Used to represent an optional with no data; essentially a bool
class monostate {};
/// A tag type to tell optional to construct its value in-place
struct in_place_t {
explicit in_place_t() = default;
};
/// A tag to tell optional to construct its value in-place
static constexpr in_place_t in_place{};
#endif
template <class T> class optional;
namespace detail {
#ifndef TL_TRAITS_MUTEX
#define TL_TRAITS_MUTEX
// C++14-style aliases for brevity
template <class T> using remove_const_t = typename std::remove_const<T>::type;
template <class T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <class T> using decay_t = typename std::decay<T>::type;
template <bool E, class T = void>
using enable_if_t = typename std::enable_if<E, T>::type;
template <bool B, class T, class F>
using conditional_t = typename std::conditional<B, T, F>::type;
// std::conjunction from C++17
template <class...> struct conjunction : std::true_type {};
template <class B> struct conjunction<B> : B {};
template <class B, class... Bs>
struct conjunction<B, Bs...>
: std::conditional<bool(B::value), conjunction<Bs...>, B>::type {};
#if defined(_LIBCPP_VERSION) && __cplusplus == 201103L
#define TL_TRAITS_LIBCXX_MEM_FN_WORKAROUND
#endif
// In C++11 mode, there's an issue in libc++'s std::mem_fn
// which results in a hard-error when using it in a noexcept expression
// in some cases. This is a check to workaround the common failing case.
#ifdef TL_TRAITS_LIBCXX_MEM_FN_WORKAROUND
template <class T> struct is_pointer_to_non_const_member_func : std::false_type{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...)> : std::true_type{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...)&> : std::true_type{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...)&&> : std::true_type{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...) volatile> : std::true_type{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...) volatile&> : std::true_type{};
template <class T, class Ret, class... Args>
struct is_pointer_to_non_const_member_func<Ret (T::*) (Args...) volatile&&> : std::true_type{};
template <class T> struct is_const_or_const_ref : std::false_type{};
template <class T> struct is_const_or_const_ref<T const&> : std::true_type{};
template <class T> struct is_const_or_const_ref<T const> : std::true_type{};
#endif
// std::invoke from C++17
// https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround
template <typename Fn, typename... Args,
#ifdef TL_TRAITS_LIBCXX_MEM_FN_WORKAROUND
typename = enable_if_t<!(is_pointer_to_non_const_member_func<Fn>::value
&& is_const_or_const_ref<Args...>::value)>,
#endif
typename = enable_if_t<std::is_member_pointer<decay_t<Fn>>::value>,
int = 0>
constexpr auto invoke(Fn &&f, Args &&... args) noexcept(
noexcept(std::mem_fn(f)(std::forward<Args>(args)...)))
-> decltype(std::mem_fn(f)(std::forward<Args>(args)...)) {
return std::mem_fn(f)(std::forward<Args>(args)...);
}
template <typename Fn, typename... Args,
typename = enable_if_t<!std::is_member_pointer<decay_t<Fn>>::value>>
constexpr auto invoke(Fn &&f, Args &&... args) noexcept(
noexcept(std::forward<Fn>(f)(std::forward<Args>(args)...)))
-> decltype(std::forward<Fn>(f)(std::forward<Args>(args)...)) {
return std::forward<Fn>(f)(std::forward<Args>(args)...);
}
// std::invoke_result from C++17
template <class F, class, class... Us> struct invoke_result_impl;
template <class F, class... Us>
struct invoke_result_impl<
F, decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...), void()),
Us...> {
using type = decltype(detail::invoke(std::declval<F>(), std::declval<Us>()...));
};
template <class F, class... Us>
using invoke_result = invoke_result_impl<F, void, Us...>;
template <class F, class... Us>
using invoke_result_t = typename invoke_result<F, Us...>::type;
#if defined(_MSC_VER) && _MSC_VER <= 1900
// TODO make a version which works with MSVC 2015
template <class T, class U = T> struct is_swappable : std::true_type {};
template <class T, class U = T> struct is_nothrow_swappable : std::true_type {};
#else
// https://stackoverflow.com/questions/26744589/what-is-a-proper-way-to-implement-is-swappable-to-test-for-the-swappable-concept
namespace swap_adl_tests {
// if swap ADL finds this then it would call std::swap otherwise (same
// signature)
struct tag {};
template <class T> tag swap(T &, T &);
template <class T, std::size_t N> tag swap(T (&a)[N], T (&b)[N]);
// helper functions to test if an unqualified swap is possible, and if it
// becomes std::swap
template <class, class> std::false_type can_swap(...) noexcept(false);
template <class T, class U,
class = decltype(swap(std::declval<T &>(), std::declval<U &>()))>
std::true_type can_swap(int) noexcept(noexcept(swap(std::declval<T &>(),
std::declval<U &>())));
template <class, class> std::false_type uses_std(...);
template <class T, class U>
std::is_same<decltype(swap(std::declval<T &>(), std::declval<U &>())), tag>
uses_std(int);
template <class T>
struct is_std_swap_noexcept
: std::integral_constant<bool,
std::is_nothrow_move_constructible<T>::value &&
std::is_nothrow_move_assignable<T>::value> {};
template <class T, std::size_t N>
struct is_std_swap_noexcept<T[N]> : is_std_swap_noexcept<T> {};
template <class T, class U>
struct is_adl_swap_noexcept
: std::integral_constant<bool, noexcept(can_swap<T, U>(0))> {};
} // namespace swap_adl_tests
template <class T, class U = T>
struct is_swappable
: std::integral_constant<
bool,
decltype(detail::swap_adl_tests::can_swap<T, U>(0))::value &&
(!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value ||
(std::is_move_assignable<T>::value &&
std::is_move_constructible<T>::value))> {};
template <class T, std::size_t N>
struct is_swappable<T[N], T[N]>
: std::integral_constant<
bool,
decltype(detail::swap_adl_tests::can_swap<T[N], T[N]>(0))::value &&
(!decltype(
detail::swap_adl_tests::uses_std<T[N], T[N]>(0))::value ||
is_swappable<T, T>::value)> {};
template <class T, class U = T>
struct is_nothrow_swappable
: std::integral_constant<
bool,
is_swappable<T, U>::value &&
((decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value
&&detail::swap_adl_tests::is_std_swap_noexcept<T>::value) ||
(!decltype(detail::swap_adl_tests::uses_std<T, U>(0))::value &&
detail::swap_adl_tests::is_adl_swap_noexcept<T,
U>::value))> {
};
#endif
#endif
// std::void_t from C++17
template <class...> struct voider { using type = void; };
template <class... Ts> using void_t = typename voider<Ts...>::type;
// Trait for checking if a type is a tl::optional
template <class T> struct is_optional_impl : std::false_type {};
template <class T> struct is_optional_impl<optional<T>> : std::true_type {};
template <class T> using is_optional = is_optional_impl<decay_t<T>>;
// Change void to tl::monostate
template <class U>
using fixup_void = conditional_t<std::is_void<U>::value, monostate, U>;
template <class F, class U, class = invoke_result_t<F, U>>
using get_map_return = optional<fixup_void<invoke_result_t<F, U>>>;
// Check if invoking F for some Us returns void
template <class F, class = void, class... U> struct returns_void_impl;
template <class F, class... U>
struct returns_void_impl<F, void_t<invoke_result_t<F, U...>>, U...>
: std::is_void<invoke_result_t<F, U...>> {};
template <class F, class... U>
using returns_void = returns_void_impl<F, void, U...>;
template <class T, class... U>
using enable_if_ret_void = enable_if_t<returns_void<T &&, U...>::value>;
template <class T, class... U>
using disable_if_ret_void = enable_if_t<!returns_void<T &&, U...>::value>;
template <class T, class U>
using enable_forward_value =
detail::enable_if_t<std::is_constructible<T, U &&>::value &&
!std::is_same<detail::decay_t<U>, in_place_t>::value &&
!std::is_same<optional<T>, detail::decay_t<U>>::value>;
template <class T, class U, class Other>
using enable_from_other = detail::enable_if_t<
std::is_constructible<T, Other>::value &&
!std::is_constructible<T, optional<U> &>::value &&
!std::is_constructible<T, optional<U> &&>::value &&
!std::is_constructible<T, const optional<U> &>::value &&
!std::is_constructible<T, const optional<U> &&>::value &&
!std::is_convertible<optional<U> &, T>::value &&
!std::is_convertible<optional<U> &&, T>::value &&
!std::is_convertible<const optional<U> &, T>::value &&
!std::is_convertible<const optional<U> &&, T>::value>;
template <class T, class U>
using enable_assign_forward = detail::enable_if_t<
!std::is_same<optional<T>, detail::decay_t<U>>::value &&
!detail::conjunction<std::is_scalar<T>,
std::is_same<T, detail::decay_t<U>>>::value &&
std::is_constructible<T, U>::value && std::is_assignable<T &, U>::value>;
template <class T, class U, class Other>
using enable_assign_from_other = detail::enable_if_t<
std::is_constructible<T, Other>::value &&
std::is_assignable<T &, Other>::value &&
!std::is_constructible<T, optional<U> &>::value &&
!std::is_constructible<T, optional<U> &&>::value &&
!std::is_constructible<T, const optional<U> &>::value &&
!std::is_constructible<T, const optional<U> &&>::value &&
!std::is_convertible<optional<U> &, T>::value &&
!std::is_convertible<optional<U> &&, T>::value &&
!std::is_convertible<const optional<U> &, T>::value &&
!std::is_convertible<const optional<U> &&, T>::value &&
!std::is_assignable<T &, optional<U> &>::value &&
!std::is_assignable<T &, optional<U> &&>::value &&
!std::is_assignable<T &, const optional<U> &>::value &&
!std::is_assignable<T &, const optional<U> &&>::value>;
// The storage base manages the actual storage, and correctly propagates
// trivial destruction from T. This case is for when T is not trivially
// destructible.
template <class T, bool = ::std::is_trivially_destructible<T>::value>
struct optional_storage_base {
TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept
: m_dummy(), m_has_value(false) {}
template <class... U>
TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U &&... u)
: m_value(std::forward<U>(u)...), m_has_value(true) {}
~optional_storage_base() {
if (m_has_value) {
m_value.~T();
m_has_value = false;
}
}
struct dummy {};
union {
dummy m_dummy;
T m_value;
};
bool m_has_value;
};
// This case is for when T is trivially destructible.
template <class T> struct optional_storage_base<T, true> {
TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept
: m_dummy(), m_has_value(false) {}
template <class... U>
TL_OPTIONAL_11_CONSTEXPR optional_storage_base(in_place_t, U &&... u)
: m_value(std::forward<U>(u)...), m_has_value(true) {}
// No destructor, so this class is trivially destructible
struct dummy {};
union {
dummy m_dummy;
T m_value;
};
bool m_has_value = false;
};
// This base class provides some handy member functions which can be used in
// further derived classes
template <class T> struct optional_operations_base : optional_storage_base<T> {
using optional_storage_base<T>::optional_storage_base;
void hard_reset() noexcept {
get().~T();
this->m_has_value = false;
}
template <class... Args> void construct(Args &&... args) noexcept {
new (std::addressof(this->m_value)) T(std::forward<Args>(args)...);
this->m_has_value = true;
}
template <class Opt> void assign(Opt &&rhs) {
if (this->has_value()) {
if (rhs.has_value()) {
this->m_value = std::forward<Opt>(rhs).get();
} else {
this->m_value.~T();
this->m_has_value = false;
}
}
else if (rhs.has_value()) {
construct(std::forward<Opt>(rhs).get());
}
}
bool has_value() const { return this->m_has_value; }
TL_OPTIONAL_11_CONSTEXPR T &get() & { return this->m_value; }
TL_OPTIONAL_11_CONSTEXPR const T &get() const & { return this->m_value; }
TL_OPTIONAL_11_CONSTEXPR T &&get() && { return std::move(this->m_value); }
#ifndef TL_OPTIONAL_NO_CONSTRR
constexpr const T &&get() const && { return std::move(this->m_value); }
#endif
};
// This class manages conditionally having a trivial copy constructor
// This specialization is for when T is trivially copy constructible
template <class T, bool = TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)>
struct optional_copy_base : optional_operations_base<T> {
using optional_operations_base<T>::optional_operations_base;
};
// This specialization is for when T is not trivially copy constructible
template <class T>
struct optional_copy_base<T, false> : optional_operations_base<T> {
using optional_operations_base<T>::optional_operations_base;
optional_copy_base() = default;
optional_copy_base(const optional_copy_base &rhs)
: optional_operations_base<T>() {
if (rhs.has_value()) {
this->construct(rhs.get());
} else {
this->m_has_value = false;
}
}
optional_copy_base(optional_copy_base &&rhs) = default;
optional_copy_base &operator=(const optional_copy_base &rhs) = default;
optional_copy_base &operator=(optional_copy_base &&rhs) = default;
};
// This class manages conditionally having a trivial move constructor
// Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it
// doesn't implement an analogue to std::is_trivially_move_constructible. We
// have to make do with a non-trivial move constructor even if T is trivially
// move constructible
#ifndef TL_OPTIONAL_GCC49
template <class T, bool = std::is_trivially_move_constructible<T>::value>
struct optional_move_base : optional_copy_base<T> {
using optional_copy_base<T>::optional_copy_base;
};
#else
template <class T, bool = false> struct optional_move_base;
#endif
template <class T> struct optional_move_base<T, false> : optional_copy_base<T> {
using optional_copy_base<T>::optional_copy_base;
optional_move_base() = default;
optional_move_base(const optional_move_base &rhs) = default;
optional_move_base(optional_move_base &&rhs) noexcept(
std::is_nothrow_move_constructible<T>::value) {
if (rhs.has_value()) {
this->construct(std::move(rhs.get()));
} else {
this->m_has_value = false;
}
}
optional_move_base &operator=(const optional_move_base &rhs) = default;
optional_move_base &operator=(optional_move_base &&rhs) = default;
};
// This class manages conditionally having a trivial copy assignment operator
template <class T, bool = TL_OPTIONAL_IS_TRIVIALLY_COPY_ASSIGNABLE(T) &&
TL_OPTIONAL_IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) &&
TL_OPTIONAL_IS_TRIVIALLY_DESTRUCTIBLE(T)>
struct optional_copy_assign_base : optional_move_base<T> {
using optional_move_base<T>::optional_move_base;
};
template <class T>
struct optional_copy_assign_base<T, false> : optional_move_base<T> {
using optional_move_base<T>::optional_move_base;
optional_copy_assign_base() = default;
optional_copy_assign_base(const optional_copy_assign_base &rhs) = default;
optional_copy_assign_base(optional_copy_assign_base &&rhs) = default;
optional_copy_assign_base &operator=(const optional_copy_assign_base &rhs) {
this->assign(rhs);
return *this;
}
optional_copy_assign_base &
operator=(optional_copy_assign_base &&rhs) = default;
};
// This class manages conditionally having a trivial move assignment operator
// Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it
// doesn't implement an analogue to std::is_trivially_move_assignable. We have
// to make do with a non-trivial move assignment operator even if T is trivially
// move assignable
#ifndef TL_OPTIONAL_GCC49
template <class T, bool = std::is_trivially_destructible<T>::value
&&std::is_trivially_move_constructible<T>::value
&&std::is_trivially_move_assignable<T>::value>
struct optional_move_assign_base : optional_copy_assign_base<T> {
using optional_copy_assign_base<T>::optional_copy_assign_base;
};
#else
template <class T, bool = false> struct optional_move_assign_base;
#endif
template <class T>
struct optional_move_assign_base<T, false> : optional_copy_assign_base<T> {
using optional_copy_assign_base<T>::optional_copy_assign_base;
optional_move_assign_base() = default;
optional_move_assign_base(const optional_move_assign_base &rhs) = default;
optional_move_assign_base(optional_move_assign_base &&rhs) = default;
optional_move_assign_base &
operator=(const optional_move_assign_base &rhs) = default;
optional_move_assign_base &
operator=(optional_move_assign_base &&rhs) noexcept(
std::is_nothrow_move_constructible<T>::value
&&std::is_nothrow_move_assignable<T>::value) {
this->assign(std::move(rhs));
return *this;
}
};
// optional_delete_ctor_base will conditionally delete copy and move
// constructors depending on whether T is copy/move constructible
template <class T, bool EnableCopy = std::is_copy_constructible<T>::value,
bool EnableMove = std::is_move_constructible<T>::value>
struct optional_delete_ctor_base {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = default;
optional_delete_ctor_base &
operator=(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base &
operator=(optional_delete_ctor_base &&) noexcept = default;
};
template <class T> struct optional_delete_ctor_base<T, true, false> {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = delete;
optional_delete_ctor_base &
operator=(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base &
operator=(optional_delete_ctor_base &&) noexcept = default;
};
template <class T> struct optional_delete_ctor_base<T, false, true> {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base &) = delete;
optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = default;
optional_delete_ctor_base &
operator=(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base &
operator=(optional_delete_ctor_base &&) noexcept = default;
};
template <class T> struct optional_delete_ctor_base<T, false, false> {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base &) = delete;
optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = delete;
optional_delete_ctor_base &
operator=(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base &
operator=(optional_delete_ctor_base &&) noexcept = default;
};
// optional_delete_assign_base will conditionally delete copy and move
// constructors depending on whether T is copy/move constructible + assignable
template <class T,
bool EnableCopy = (std::is_copy_constructible<T>::value &&
std::is_copy_assignable<T>::value),
bool EnableMove = (std::is_move_constructible<T>::value &&
std::is_move_assignable<T>::value)>
struct optional_delete_assign_base {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base &) = default;
optional_delete_assign_base(optional_delete_assign_base &&) noexcept =
default;
optional_delete_assign_base &
operator=(const optional_delete_assign_base &) = default;
optional_delete_assign_base &
operator=(optional_delete_assign_base &&) noexcept = default;
};
template <class T> struct optional_delete_assign_base<T, true, false> {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base &) = default;
optional_delete_assign_base(optional_delete_assign_base &&) noexcept =
default;
optional_delete_assign_base &
operator=(const optional_delete_assign_base &) = default;
optional_delete_assign_base &
operator=(optional_delete_assign_base &&) noexcept = delete;
};
template <class T> struct optional_delete_assign_base<T, false, true> {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base &) = default;
optional_delete_assign_base(optional_delete_assign_base &&) noexcept =
default;
optional_delete_assign_base &
operator=(const optional_delete_assign_base &) = delete;
optional_delete_assign_base &
operator=(optional_delete_assign_base &&) noexcept = default;
};
template <class T> struct optional_delete_assign_base<T, false, false> {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base &) = default;
optional_delete_assign_base(optional_delete_assign_base &&) noexcept =
default;
optional_delete_assign_base &
operator=(const optional_delete_assign_base &) = delete;
optional_delete_assign_base &
operator=(optional_delete_assign_base &&) noexcept = delete;
};
} // namespace detail
/// A tag type to represent an empty optional
struct nullopt_t {
struct do_not_use {};
constexpr explicit nullopt_t(do_not_use, do_not_use) noexcept {}
};
/// Represents an empty optional
static constexpr nullopt_t nullopt{nullopt_t::do_not_use{},
nullopt_t::do_not_use{}};
class bad_optional_access : public std::exception {
public:
bad_optional_access() = default;
const char *what() const noexcept { return "Optional has no value"; }
};
/// An optional object is an object that contains the storage for another
/// object and manages the lifetime of this contained object, if any. The
/// contained object may be initialized after the optional object has been
/// initialized, and may be destroyed before the optional object has been
/// destroyed. The initialization state of the contained object is tracked by
/// the optional object.
template <class T>
class optional : private detail::optional_move_assign_base<T>,
private detail::optional_delete_ctor_base<T>,
private detail::optional_delete_assign_base<T> {
using base = detail::optional_move_assign_base<T>;
static_assert(!std::is_same<T, in_place_t>::value,
"instantiation of optional with in_place_t is ill-formed");
static_assert(!std::is_same<detail::decay_t<T>, nullopt_t>::value,
"instantiation of optional with nullopt_t is ill-formed");
public:
// The different versions for C++14 and 11 are needed because deduced return
// types are not SFINAE-safe. This provides better support for things like
// generic lambdas. C.f.
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0826r0.html
#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \
!defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55)
/// Carries out some operation which returns an optional on the stored
/// object if there is one.
template <class F> TL_OPTIONAL_11_CONSTEXPR auto and_then(F &&f) & {
using result = detail::invoke_result_t<F, T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
template <class F> TL_OPTIONAL_11_CONSTEXPR auto and_then(F &&f) && {
using result = detail::invoke_result_t<F, T &&>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: result(nullopt);
}
template <class F> constexpr auto and_then(F &&f) const & {
using result = detail::invoke_result_t<F, const T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F> constexpr auto and_then(F &&f) const && {
using result = detail::invoke_result_t<F, const T &&>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: result(nullopt);
}
#endif
#else
/// Carries out some operation which returns an optional on the stored
/// object if there is one.
template <class F>
TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T &> and_then(F &&f) & {
using result = detail::invoke_result_t<F, T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
template <class F>
TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T &&> and_then(F &&f) && {
using result = detail::invoke_result_t<F, T &&>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: result(nullopt);
}
template <class F>
constexpr detail::invoke_result_t<F, const T &> and_then(F &&f) const & {
using result = detail::invoke_result_t<F, const T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F>
constexpr detail::invoke_result_t<F, const T &&> and_then(F &&f) const && {
using result = detail::invoke_result_t<F, const T &&>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: result(nullopt);
}
#endif
#endif
#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \
!defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55)
/// Carries out some operation on the stored object if there is one.
template <class F> TL_OPTIONAL_11_CONSTEXPR auto map(F &&f) & {
return optional_map_impl(*this, std::forward<F>(f));
}
template <class F> TL_OPTIONAL_11_CONSTEXPR auto map(F &&f) && {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
template <class F> constexpr auto map(F &&f) const & {
return optional_map_impl(*this, std::forward<F>(f));
}
template <class F> constexpr auto map(F &&f) const && {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
#else
/// Carries out some operation on the stored object if there is one.
template <class F>
TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional &>(),
std::declval<F &&>()))
map(F &&f) & {
return optional_map_impl(*this, std::forward<F>(f));
}
template <class F>
TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional &&>(),
std::declval<F &&>()))
map(F &&f) && {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
template <class F>
constexpr decltype(optional_map_impl(std::declval<const optional &>(),
std::declval<F &&>()))
map(F &&f) const & {
return optional_map_impl(*this, std::forward<F>(f));
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F>
constexpr decltype(optional_map_impl(std::declval<const optional &&>(),
std::declval<F &&>()))
map(F &&f) const && {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
#endif
#endif
#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \
!defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55)
/// Carries out some operation on the stored object if there is one.
template <class F> TL_OPTIONAL_11_CONSTEXPR auto transform(F&& f) & {
return optional_map_impl(*this, std::forward<F>(f));
}
template <class F> TL_OPTIONAL_11_CONSTEXPR auto transform(F&& f) && {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
template <class F> constexpr auto transform(F&& f) const & {
return optional_map_impl(*this, std::forward<F>(f));
}
template <class F> constexpr auto transform(F&& f) const && {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
#else
/// Carries out some operation on the stored object if there is one.
template <class F>
TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&>(),
std::declval<F&&>()))
transform(F&& f) & {
return optional_map_impl(*this, std::forward<F>(f));
}
template <class F>
TL_OPTIONAL_11_CONSTEXPR decltype(optional_map_impl(std::declval<optional&&>(),
std::declval<F&&>()))
transform(F&& f) && {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
template <class F>
constexpr decltype(optional_map_impl(std::declval<const optional&>(),
std::declval<F&&>()))
transform(F&& f) const & {
return optional_map_impl(*this, std::forward<F>(f));
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F>
constexpr decltype(optional_map_impl(std::declval<const optional&&>(),
std::declval<F&&>()))
transform(F&& f) const && {
return optional_map_impl(std::move(*this), std::forward<F>(f));
}
#endif
#endif
/// Calls `f` if the optional is empty
template <class F, detail::enable_if_ret_void<F> * = nullptr>
optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) & {
if (has_value())
return *this;
std::forward<F>(f)();
return nullopt;
}
template <class F, detail::disable_if_ret_void<F> * = nullptr>
optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) & {
return has_value() ? *this : std::forward<F>(f)();
}
template <class F, detail::enable_if_ret_void<F> * = nullptr>
optional<T> or_else(F &&f) && {
if (has_value())
return std::move(*this);
std::forward<F>(f)();
return nullopt;
}
template <class F, detail::disable_if_ret_void<F> * = nullptr>
optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) && {
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
template <class F, detail::enable_if_ret_void<F> * = nullptr>
optional<T> or_else(F &&f) const & {
if (has_value())
return *this;
std::forward<F>(f)();
return nullopt;
}
template <class F, detail::disable_if_ret_void<F> * = nullptr>
optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) const & {
return has_value() ? *this : std::forward<F>(f)();
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F, detail::enable_if_ret_void<F> * = nullptr>
optional<T> or_else(F &&f) const && {
if (has_value())
return std::move(*this);
std::forward<F>(f)();
return nullopt;
}
template <class F, detail::disable_if_ret_void<F> * = nullptr>
optional<T> or_else(F &&f) const && {
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
#endif
/// Maps the stored value with `f` if there is one, otherwise returns `u`.
template <class F, class U> U map_or(F &&f, U &&u) & {
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: std::forward<U>(u);
}
template <class F, class U> U map_or(F &&f, U &&u) && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: std::forward<U>(u);
}
template <class F, class U> U map_or(F &&f, U &&u) const & {
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: std::forward<U>(u);
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F, class U> U map_or(F &&f, U &&u) const && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: std::forward<U>(u);
}
#endif
/// Maps the stored value with `f` if there is one, otherwise calls
/// `u` and returns the result.
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F &&f, U &&u) & {
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: std::forward<U>(u)();
}
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F &&f, U &&u) && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: std::forward<U>(u)();
}
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F &&f, U &&u) const & {
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: std::forward<U>(u)();
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F &&f, U &&u) const && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: std::forward<U>(u)();
}
#endif
/// Returns `u` if `*this` has a value, otherwise an empty optional.
template <class U>
constexpr optional<typename std::decay<U>::type> conjunction(U &&u) const {
using result = optional<detail::decay_t<U>>;
return has_value() ? result{u} : result{nullopt};
}
/// Returns `rhs` if `*this` is empty, otherwise the current value.
TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional &rhs) & {
return has_value() ? *this : rhs;
}
constexpr optional disjunction(const optional &rhs) const & {
return has_value() ? *this : rhs;
}
TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional &rhs) && {
return has_value() ? std::move(*this) : rhs;
}
#ifndef TL_OPTIONAL_NO_CONSTRR
constexpr optional disjunction(const optional &rhs) const && {
return has_value() ? std::move(*this) : rhs;
}
#endif
TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional &&rhs) & {
return has_value() ? *this : std::move(rhs);
}
constexpr optional disjunction(optional &&rhs) const & {
return has_value() ? *this : std::move(rhs);
}
TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional &&rhs) && {
return has_value() ? std::move(*this) : std::move(rhs);
}
#ifndef TL_OPTIONAL_NO_CONSTRR
constexpr optional disjunction(optional &&rhs) const && {
return has_value() ? std::move(*this) : std::move(rhs);
}
#endif
/// Takes the value out of the optional, leaving it empty
optional take() {
optional ret = std::move(*this);
reset();
return ret;
}
using value_type = T;
/// Constructs an optional that does not contain a value.
constexpr optional() noexcept = default;
constexpr optional(nullopt_t) noexcept {}
/// Copy constructor
///
/// If `rhs` contains a value, the stored value is direct-initialized with
/// it. Otherwise, the constructed optional is empty.
TL_OPTIONAL_11_CONSTEXPR optional(const optional &rhs) = default;
/// Move constructor
///
/// If `rhs` contains a value, the stored value is direct-initialized with
/// it. Otherwise, the constructed optional is empty.
TL_OPTIONAL_11_CONSTEXPR optional(optional &&rhs) = default;
/// Constructs the stored value in-place using the given arguments.
template <class... Args>
constexpr explicit optional(
detail::enable_if_t<std::is_constructible<T, Args...>::value, in_place_t>,
Args &&... args)
: base(in_place, std::forward<Args>(args)...) {}
template <class U, class... Args>
TL_OPTIONAL_11_CONSTEXPR explicit optional(
detail::enable_if_t<std::is_constructible<T, std::initializer_list<U> &,
Args &&...>::value,
in_place_t>,
std::initializer_list<U> il, Args &&... args) {
this->construct(il, std::forward<Args>(args)...);
}
/// Constructs the stored value with `u`.
template <
class U = T,
detail::enable_if_t<std::is_convertible<U &&, T>::value> * = nullptr,
detail::enable_forward_value<T, U> * = nullptr>
constexpr optional(U &&u) : base(in_place, std::forward<U>(u)) {}
template <
class U = T,
detail::enable_if_t<!std::is_convertible<U &&, T>::value> * = nullptr,
detail::enable_forward_value<T, U> * = nullptr>
constexpr explicit optional(U &&u) : base(in_place, std::forward<U>(u)) {}
/// Converting copy constructor.
template <
class U, detail::enable_from_other<T, U, const U &> * = nullptr,
detail::enable_if_t<std::is_convertible<const U &, T>::value> * = nullptr>
optional(const optional<U> &rhs) {
if (rhs.has_value()) {
this->construct(*rhs);
}
}
template <class U, detail::enable_from_other<T, U, const U &> * = nullptr,
detail::enable_if_t<!std::is_convertible<const U &, T>::value> * =
nullptr>
explicit optional(const optional<U> &rhs) {
if (rhs.has_value()) {
this->construct(*rhs);
}
}
/// Converting move constructor.
template <
class U, detail::enable_from_other<T, U, U &&> * = nullptr,
detail::enable_if_t<std::is_convertible<U &&, T>::value> * = nullptr>
optional(optional<U> &&rhs) {
if (rhs.has_value()) {
this->construct(std::move(*rhs));
}
}
template <
class U, detail::enable_from_other<T, U, U &&> * = nullptr,
detail::enable_if_t<!std::is_convertible<U &&, T>::value> * = nullptr>
explicit optional(optional<U> &&rhs) {
if (rhs.has_value()) {
this->construct(std::move(*rhs));
}
}
/// Destroys the stored value if there is one.
~optional() = default;
/// Assignment to empty.
///
/// Destroys the current value if there is one.
optional &operator=(nullopt_t) noexcept {
if (has_value()) {
this->m_value.~T();
this->m_has_value = false;
}
return *this;
}
/// Copy assignment.
///
/// Copies the value from `rhs` if there is one. Otherwise resets the stored
/// value in `*this`.
optional &operator=(const optional &rhs) = default;
/// Move assignment.
///
/// Moves the value from `rhs` if there is one. Otherwise resets the stored
/// value in `*this`.
optional &operator=(optional &&rhs) = default;
/// Assigns the stored value from `u`, destroying the old value if there was
/// one.
template <class U = T, detail::enable_assign_forward<T, U> * = nullptr>
optional &operator=(U &&u) {
if (has_value()) {
this->m_value = std::forward<U>(u);
} else {
this->construct(std::forward<U>(u));
}
return *this;
}
/// Converting copy assignment operator.
///
/// Copies the value from `rhs` if there is one. Otherwise resets the stored
/// value in `*this`.
template <class U,
detail::enable_assign_from_other<T, U, const U &> * = nullptr>
optional &operator=(const optional<U> &rhs) {
if (has_value()) {
if (rhs.has_value()) {
this->m_value = *rhs;
} else {
this->hard_reset();
}
}
if (rhs.has_value()) {
this->construct(*rhs);
}
return *this;
}
// TODO check exception guarantee
/// Converting move assignment operator.
///
/// Moves the value from `rhs` if there is one. Otherwise resets the stored
/// value in `*this`.
template <class U, detail::enable_assign_from_other<T, U, U> * = nullptr>
optional &operator=(optional<U> &&rhs) {
if (has_value()) {
if (rhs.has_value()) {
this->m_value = std::move(*rhs);
} else {
this->hard_reset();
}
}
if (rhs.has_value()) {
this->construct(std::move(*rhs));
}
return *this;
}
/// Constructs the value in-place, destroying the current one if there is
/// one.
template <class... Args> T &emplace(Args &&... args) {
static_assert(std::is_constructible<T, Args &&...>::value,
"T must be constructible with Args");
*this = nullopt;
this->construct(std::forward<Args>(args)...);
return value();
}
template <class U, class... Args>
detail::enable_if_t<
std::is_constructible<T, std::initializer_list<U> &, Args &&...>::value,
T &>
emplace(std::initializer_list<U> il, Args &&... args) {
*this = nullopt;
this->construct(il, std::forward<Args>(args)...);
return value();
}
/// Swaps this optional with the other.
///
/// If neither optionals have a value, nothing happens.
/// If both have a value, the values are swapped.
/// If one has a value, it is moved to the other and the movee is left
/// valueless.
void
swap(optional &rhs) noexcept(std::is_nothrow_move_constructible<T>::value
&&detail::is_nothrow_swappable<T>::value) {
using std::swap;
if (has_value()) {
if (rhs.has_value()) {
swap(**this, *rhs);
} else {
new (std::addressof(rhs.m_value)) T(std::move(this->m_value));
this->m_value.T::~T();
}
} else if (rhs.has_value()) {
new (std::addressof(this->m_value)) T(std::move(rhs.m_value));
rhs.m_value.T::~T();
}
swap(this->m_has_value, rhs.m_has_value);
}
/// Returns a pointer to the stored value
constexpr const T *operator->() const {
return std::addressof(this->m_value);
}
TL_OPTIONAL_11_CONSTEXPR T *operator->() {
return std::addressof(this->m_value);
}
/// Returns the stored value
TL_OPTIONAL_11_CONSTEXPR T &operator*() & { return this->m_value; }
constexpr const T &operator*() const & { return this->m_value; }
TL_OPTIONAL_11_CONSTEXPR T &&operator*() && {
return std::move(this->m_value);
}
#ifndef TL_OPTIONAL_NO_CONSTRR
constexpr const T &&operator*() const && { return std::move(this->m_value); }
#endif
/// Returns whether or not the optional has a value
constexpr bool has_value() const noexcept { return this->m_has_value; }
constexpr explicit operator bool() const noexcept {
return this->m_has_value;
}
/// Returns the contained value if there is one, otherwise throws bad_optional_access
TL_OPTIONAL_11_CONSTEXPR T &value() & {
if (has_value())
return this->m_value;
throw bad_optional_access();
}
TL_OPTIONAL_11_CONSTEXPR const T &value() const & {
if (has_value())
return this->m_value;
throw bad_optional_access();
}
TL_OPTIONAL_11_CONSTEXPR T &&value() && {
if (has_value())
return std::move(this->m_value);
throw bad_optional_access();
}
#ifndef TL_OPTIONAL_NO_CONSTRR
TL_OPTIONAL_11_CONSTEXPR const T &&value() const && {
if (has_value())
return std::move(this->m_value);
throw bad_optional_access();
}
#endif
/// Returns the stored value if there is one, otherwise returns `u`
template <class U> constexpr T value_or(U &&u) const & {
static_assert(std::is_copy_constructible<T>::value &&
std::is_convertible<U &&, T>::value,
"T must be copy constructible and convertible from U");
return has_value() ? **this : static_cast<T>(std::forward<U>(u));
}
template <class U> TL_OPTIONAL_11_CONSTEXPR T value_or(U &&u) && {
static_assert(std::is_move_constructible<T>::value &&
std::is_convertible<U &&, T>::value,
"T must be move constructible and convertible from U");
return has_value() ? **this : static_cast<T>(std::forward<U>(u));
}
/// Destroys the stored value if one exists, making the optional empty
void reset() noexcept {
if (has_value()) {
this->m_value.~T();
this->m_has_value = false;
}
}
}; // namespace tl
/// Compares two optional objects
template <class T, class U>
inline constexpr bool operator==(const optional<T> &lhs,
const optional<U> &rhs) {
return lhs.has_value() == rhs.has_value() &&
(!lhs.has_value() || *lhs == *rhs);
}
template <class T, class U>
inline constexpr bool operator!=(const optional<T> &lhs,
const optional<U> &rhs) {
return lhs.has_value() != rhs.has_value() ||
(lhs.has_value() && *lhs != *rhs);
}
template <class T, class U>
inline constexpr bool operator<(const optional<T> &lhs,
const optional<U> &rhs) {
return rhs.has_value() && (!lhs.has_value() || *lhs < *rhs);
}
template <class T, class U>
inline constexpr bool operator>(const optional<T> &lhs,
const optional<U> &rhs) {
return lhs.has_value() && (!rhs.has_value() || *lhs > *rhs);
}
template <class T, class U>
inline constexpr bool operator<=(const optional<T> &lhs,
const optional<U> &rhs) {
return !lhs.has_value() || (rhs.has_value() && *lhs <= *rhs);
}
template <class T, class U>
inline constexpr bool operator>=(const optional<T> &lhs,
const optional<U> &rhs) {
return !rhs.has_value() || (lhs.has_value() && *lhs >= *rhs);
}
/// Compares an optional to a `nullopt`
template <class T>
inline constexpr bool operator==(const optional<T> &lhs, nullopt_t) noexcept {
return !lhs.has_value();
}
template <class T>
inline constexpr bool operator==(nullopt_t, const optional<T> &rhs) noexcept {
return !rhs.has_value();
}
template <class T>
inline constexpr bool operator!=(const optional<T> &lhs, nullopt_t) noexcept {
return lhs.has_value();
}
template <class T>
inline constexpr bool operator!=(nullopt_t, const optional<T> &rhs) noexcept {
return rhs.has_value();
}
template <class T>
inline constexpr bool operator<(const optional<T> &, nullopt_t) noexcept {
return false;
}
template <class T>
inline constexpr bool operator<(nullopt_t, const optional<T> &rhs) noexcept {
return rhs.has_value();
}
template <class T>
inline constexpr bool operator<=(const optional<T> &lhs, nullopt_t) noexcept {
return !lhs.has_value();
}
template <class T>
inline constexpr bool operator<=(nullopt_t, const optional<T> &) noexcept {
return true;
}
template <class T>
inline constexpr bool operator>(const optional<T> &lhs, nullopt_t) noexcept {
return lhs.has_value();
}
template <class T>
inline constexpr bool operator>(nullopt_t, const optional<T> &) noexcept {
return false;
}
template <class T>
inline constexpr bool operator>=(const optional<T> &, nullopt_t) noexcept {
return true;
}
template <class T>
inline constexpr bool operator>=(nullopt_t, const optional<T> &rhs) noexcept {
return !rhs.has_value();
}
/// Compares the optional with a value.
template <class T, class U>
inline constexpr bool operator==(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs == rhs : false;
}
template <class T, class U>
inline constexpr bool operator==(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs == *rhs : false;
}
template <class T, class U>
inline constexpr bool operator!=(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs != rhs : true;
}
template <class T, class U>
inline constexpr bool operator!=(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs != *rhs : true;
}
template <class T, class U>
inline constexpr bool operator<(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs < rhs : true;
}
template <class T, class U>
inline constexpr bool operator<(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs < *rhs : false;
}
template <class T, class U>
inline constexpr bool operator<=(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs <= rhs : true;
}
template <class T, class U>
inline constexpr bool operator<=(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs <= *rhs : false;
}
template <class T, class U>
inline constexpr bool operator>(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs > rhs : false;
}
template <class T, class U>
inline constexpr bool operator>(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs > *rhs : true;
}
template <class T, class U>
inline constexpr bool operator>=(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs >= rhs : false;
}
template <class T, class U>
inline constexpr bool operator>=(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs >= *rhs : true;
}
template <class T,
detail::enable_if_t<std::is_move_constructible<T>::value> * = nullptr,
detail::enable_if_t<detail::is_swappable<T>::value> * = nullptr>
void swap(optional<T> &lhs,
optional<T> &rhs) noexcept(noexcept(lhs.swap(rhs))) {
return lhs.swap(rhs);
}
namespace detail {
struct i_am_secret {};
} // namespace detail
template <class T = detail::i_am_secret, class U,
class Ret =
detail::conditional_t<std::is_same<T, detail::i_am_secret>::value,
detail::decay_t<U>, T>>
inline constexpr optional<Ret> make_optional(U &&v) {
return optional<Ret>(std::forward<U>(v));
}
template <class T, class... Args>
inline constexpr optional<T> make_optional(Args &&... args) {
return optional<T>(in_place, std::forward<Args>(args)...);
}
template <class T, class U, class... Args>
inline constexpr optional<T> make_optional(std::initializer_list<U> il,
Args &&... args) {
return optional<T>(in_place, il, std::forward<Args>(args)...);
}
#if __cplusplus >= 201703L
template <class T> optional(T)->optional<T>;
#endif
/// \exclude
namespace detail {
#ifdef TL_OPTIONAL_CXX14
template <class Opt, class F,
class Ret = decltype(detail::invoke(std::declval<F>(),
*std::declval<Opt>())),
detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr>
constexpr auto optional_map_impl(Opt &&opt, F &&f) {
return opt.has_value()
? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt))
: optional<Ret>(nullopt);
}
template <class Opt, class F,
class Ret = decltype(detail::invoke(std::declval<F>(),
*std::declval<Opt>())),
detail::enable_if_t<std::is_void<Ret>::value> * = nullptr>
auto optional_map_impl(Opt &&opt, F &&f) {
if (opt.has_value()) {
detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt));
return make_optional(monostate{});
}
return optional<monostate>(nullopt);
}
#else
template <class Opt, class F,
class Ret = decltype(detail::invoke(std::declval<F>(),
*std::declval<Opt>())),
detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr>
constexpr auto optional_map_impl(Opt &&opt, F &&f) -> optional<Ret> {
return opt.has_value()
? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt))
: optional<Ret>(nullopt);
}
template <class Opt, class F,
class Ret = decltype(detail::invoke(std::declval<F>(),
*std::declval<Opt>())),
detail::enable_if_t<std::is_void<Ret>::value> * = nullptr>
auto optional_map_impl(Opt &&opt, F &&f) -> optional<monostate> {
if (opt.has_value()) {
detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt));
return monostate{};
}
return nullopt;
}
#endif
} // namespace detail
/// Specialization for when `T` is a reference. `optional<T&>` acts similarly
/// to a `T*`, but provides more operations and shows intent more clearly.
template <class T> class optional<T &> {
public:
// The different versions for C++14 and 11 are needed because deduced return
// types are not SFINAE-safe. This provides better support for things like
// generic lambdas. C.f.
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0826r0.html
#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \
!defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55)
/// Carries out some operation which returns an optional on the stored
/// object if there is one.
template <class F> TL_OPTIONAL_11_CONSTEXPR auto and_then(F &&f) & {
using result = detail::invoke_result_t<F, T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
template <class F> TL_OPTIONAL_11_CONSTEXPR auto and_then(F &&f) && {
using result = detail::invoke_result_t<F, T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
template <class F> constexpr auto and_then(F &&f) const & {
using result = detail::invoke_result_t<F, const T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F> constexpr auto and_then(F &&f) const && {
using result = detail::invoke_result_t<F, const T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
#endif
#else
/// Carries out some operation which returns an optional on the stored
/// object if there is one.
template <class F>
TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T &> and_then(F &&f) & {
using result = detail::invoke_result_t<F, T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
template <class F>
TL_OPTIONAL_11_CONSTEXPR detail::invoke_result_t<F, T &> and_then(F &&f) && {
using result = detail::invoke_result_t<F, T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
template <class F>
constexpr detail::invoke_result_t<F, const T &> and_then(F &&f) const & {
using result = detail::invoke_result_t<F, const T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F>
constexpr detail::invoke_result_t<F, const T &> and_then(F &&f) const && {
using result = detail::invoke_result_t<F, const T &>;
static_assert(detail::is_optional<result>::value,
"F must return an optional");
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: result(nullopt);
}
#endif
#endif
#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \
!defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55)
/// Carries out some operation on the stored object if there is one.
template <class F> TL_OPTIONAL_11_CONSTEXPR auto map(F &&f) & {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
template <class F> TL_OPTIONAL_11_CONSTEXPR auto map(F &&f) && {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
template <class F> constexpr auto map(F &&f) const & {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
template <class F> constexpr auto map(F &&f) const && {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
#else
/// Carries out some operation on the stored object if there is one.
template <class F>
TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional &>(),
std::declval<F &&>()))
map(F &&f) & {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
template <class F>
TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional &&>(),
std::declval<F &&>()))
map(F &&f) && {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
template <class F>
constexpr decltype(detail::optional_map_impl(std::declval<const optional &>(),
std::declval<F &&>()))
map(F &&f) const & {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F>
constexpr decltype(detail::optional_map_impl(std::declval<const optional &&>(),
std::declval<F &&>()))
map(F &&f) const && {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
#endif
#endif
#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \
!defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55)
/// Carries out some operation on the stored object if there is one.
template <class F> TL_OPTIONAL_11_CONSTEXPR auto transform(F&& f) & {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
template <class F> TL_OPTIONAL_11_CONSTEXPR auto transform(F&& f) && {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
template <class F> constexpr auto transform(F&& f) const & {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
template <class F> constexpr auto transform(F&& f) const && {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
#else
/// Carries out some operation on the stored object if there is one.
template <class F>
TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&>(),
std::declval<F&&>()))
transform(F&& f) & {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
/// \group map
/// \synopsis template <class F> auto transform(F &&f) &&;
template <class F>
TL_OPTIONAL_11_CONSTEXPR decltype(detail::optional_map_impl(std::declval<optional&&>(),
std::declval<F&&>()))
transform(F&& f) && {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
template <class F>
constexpr decltype(detail::optional_map_impl(std::declval<const optional&>(),
std::declval<F&&>()))
transform(F&& f) const & {
return detail::optional_map_impl(*this, std::forward<F>(f));
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F>
constexpr decltype(detail::optional_map_impl(std::declval<const optional&&>(),
std::declval<F&&>()))
transform(F&& f) const && {
return detail::optional_map_impl(std::move(*this), std::forward<F>(f));
}
#endif
#endif
/// Calls `f` if the optional is empty
template <class F, detail::enable_if_ret_void<F> * = nullptr>
optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) & {
if (has_value())
return *this;
std::forward<F>(f)();
return nullopt;
}
template <class F, detail::disable_if_ret_void<F> * = nullptr>
optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) & {
return has_value() ? *this : std::forward<F>(f)();
}
template <class F, detail::enable_if_ret_void<F> * = nullptr>
optional<T> or_else(F &&f) && {
if (has_value())
return std::move(*this);
std::forward<F>(f)();
return nullopt;
}
template <class F, detail::disable_if_ret_void<F> * = nullptr>
optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) && {
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
template <class F, detail::enable_if_ret_void<F> * = nullptr>
optional<T> or_else(F &&f) const & {
if (has_value())
return *this;
std::forward<F>(f)();
return nullopt;
}
template <class F, detail::disable_if_ret_void<F> * = nullptr>
optional<T> TL_OPTIONAL_11_CONSTEXPR or_else(F &&f) const & {
return has_value() ? *this : std::forward<F>(f)();
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F, detail::enable_if_ret_void<F> * = nullptr>
optional<T> or_else(F &&f) const && {
if (has_value())
return std::move(*this);
std::forward<F>(f)();
return nullopt;
}
template <class F, detail::disable_if_ret_void<F> * = nullptr>
optional<T> or_else(F &&f) const && {
return has_value() ? std::move(*this) : std::forward<F>(f)();
}
#endif
/// Maps the stored value with `f` if there is one, otherwise returns `u`
template <class F, class U> U map_or(F &&f, U &&u) & {
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: std::forward<U>(u);
}
template <class F, class U> U map_or(F &&f, U &&u) && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: std::forward<U>(u);
}
template <class F, class U> U map_or(F &&f, U &&u) const & {
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: std::forward<U>(u);
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F, class U> U map_or(F &&f, U &&u) const && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: std::forward<U>(u);
}
#endif
/// Maps the stored value with `f` if there is one, otherwise calls
/// `u` and returns the result.
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F &&f, U &&u) & {
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: std::forward<U>(u)();
}
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F &&f, U &&u) && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: std::forward<U>(u)();
}
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F &&f, U &&u) const & {
return has_value() ? detail::invoke(std::forward<F>(f), **this)
: std::forward<U>(u)();
}
#ifndef TL_OPTIONAL_NO_CONSTRR
template <class F, class U>
detail::invoke_result_t<U> map_or_else(F &&f, U &&u) const && {
return has_value() ? detail::invoke(std::forward<F>(f), std::move(**this))
: std::forward<U>(u)();
}
#endif
/// Returns `u` if `*this` has a value, otherwise an empty optional.
template <class U>
constexpr optional<typename std::decay<U>::type> conjunction(U &&u) const {
using result = optional<detail::decay_t<U>>;
return has_value() ? result{u} : result{nullopt};
}
/// Returns `rhs` if `*this` is empty, otherwise the current value.
TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional &rhs) & {
return has_value() ? *this : rhs;
}
constexpr optional disjunction(const optional &rhs) const & {
return has_value() ? *this : rhs;
}
TL_OPTIONAL_11_CONSTEXPR optional disjunction(const optional &rhs) && {
return has_value() ? std::move(*this) : rhs;
}
#ifndef TL_OPTIONAL_NO_CONSTRR
constexpr optional disjunction(const optional &rhs) const && {
return has_value() ? std::move(*this) : rhs;
}
#endif
TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional &&rhs) & {
return has_value() ? *this : std::move(rhs);
}
constexpr optional disjunction(optional &&rhs) const & {
return has_value() ? *this : std::move(rhs);
}
TL_OPTIONAL_11_CONSTEXPR optional disjunction(optional &&rhs) && {
return has_value() ? std::move(*this) : std::move(rhs);
}
#ifndef TL_OPTIONAL_NO_CONSTRR
constexpr optional disjunction(optional &&rhs) const && {
return has_value() ? std::move(*this) : std::move(rhs);
}
#endif
/// Takes the value out of the optional, leaving it empty
optional take() {
optional ret = std::move(*this);
reset();
return ret;
}
using value_type = T &;
/// Constructs an optional that does not contain a value.
constexpr optional() noexcept : m_value(nullptr) {}
constexpr optional(nullopt_t) noexcept : m_value(nullptr) {}
/// Copy constructor
///
/// If `rhs` contains a value, the stored value is direct-initialized with
/// it. Otherwise, the constructed optional is empty.
TL_OPTIONAL_11_CONSTEXPR optional(const optional &rhs) noexcept = default;
/// Move constructor
///
/// If `rhs` contains a value, the stored value is direct-initialized with
/// it. Otherwise, the constructed optional is empty.
TL_OPTIONAL_11_CONSTEXPR optional(optional &&rhs) = default;
/// Constructs the stored value with `u`.
template <class U = T,
detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>
* = nullptr>
constexpr optional(U &&u) noexcept : m_value(std::addressof(u)) {
static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue");
}
template <class U>
constexpr explicit optional(const optional<U> &rhs) noexcept : optional(*rhs) {}
/// No-op
~optional() = default;
/// Assignment to empty.
///
/// Destroys the current value if there is one.
optional &operator=(nullopt_t) noexcept {
m_value = nullptr;
return *this;
}
/// Copy assignment.
///
/// Rebinds this optional to the referee of `rhs` if there is one. Otherwise
/// resets the stored value in `*this`.
optional &operator=(const optional &rhs) = default;
/// Rebinds this optional to `u`.
template <class U = T,
detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>
* = nullptr>
optional &operator=(U &&u) {
static_assert(std::is_lvalue_reference<U>::value, "U must be an lvalue");
m_value = std::addressof(u);
return *this;
}
/// Converting copy assignment operator.
///
/// Rebinds this optional to the referee of `rhs` if there is one. Otherwise
/// resets the stored value in `*this`.
template <class U> optional &operator=(const optional<U> &rhs) noexcept {
m_value = std::addressof(rhs.value());
return *this;
}
/// Rebinds this optional to `u`.
template <class U = T,
detail::enable_if_t<!detail::is_optional<detail::decay_t<U>>::value>
* = nullptr>
optional &emplace(U &&u) noexcept {
return *this = std::forward<U>(u);
}
void swap(optional &rhs) noexcept { std::swap(m_value, rhs.m_value); }
/// Returns a pointer to the stored value
constexpr const T *operator->() const noexcept { return m_value; }
TL_OPTIONAL_11_CONSTEXPR T *operator->() noexcept { return m_value; }
/// Returns the stored value
TL_OPTIONAL_11_CONSTEXPR T &operator*() noexcept { return *m_value; }
constexpr const T &operator*() const noexcept { return *m_value; }
constexpr bool has_value() const noexcept { return m_value != nullptr; }
constexpr explicit operator bool() const noexcept {
return m_value != nullptr;
}
/// Returns the contained value if there is one, otherwise throws bad_optional_access
TL_OPTIONAL_11_CONSTEXPR T &value() {
if (has_value())
return *m_value;
throw bad_optional_access();
}
TL_OPTIONAL_11_CONSTEXPR const T &value() const {
if (has_value())
return *m_value;
throw bad_optional_access();
}
/// Returns the stored value if there is one, otherwise returns `u`
template <class U> constexpr T value_or(U &&u) const & noexcept {
static_assert(std::is_copy_constructible<T>::value &&
std::is_convertible<U &&, T>::value,
"T must be copy constructible and convertible from U");
return has_value() ? **this : static_cast<T>(std::forward<U>(u));
}
/// \group value_or
template <class U> TL_OPTIONAL_11_CONSTEXPR T value_or(U &&u) && noexcept {
static_assert(std::is_move_constructible<T>::value &&
std::is_convertible<U &&, T>::value,
"T must be move constructible and convertible from U");
return has_value() ? **this : static_cast<T>(std::forward<U>(u));
}
/// Destroys the stored value if one exists, making the optional empty
void reset() noexcept { m_value = nullptr; }
private:
T *m_value;
}; // namespace tl
} // namespace tl
namespace std {
// TODO SFINAE
template <class T> struct hash<tl::optional<T>> {
::std::size_t operator()(const tl::optional<T> &o) const {
if (!o.has_value())
return 0;
return std::hash<tl::detail::remove_const_t<T>>()(*o);
}
};
} // namespace std
#endif
|