1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
//? #version 150
#include "lighting.sdr" //! #include "lighting.sdr"
#include "shadows.sdr" //! #include "shadows.sdr"
out vec4 fragOut0;
uniform sampler2D ColorBuffer;
uniform sampler2D NormalBuffer;
uniform sampler2D PositionBuffer;
uniform sampler2D SpecBuffer;
uniform sampler2DArray shadow_map;
layout (std140) uniform globalDeferredData {
mat4 shadow_mv_matrix;
mat4 shadow_proj_matrix[4];
mat4 inv_view_matrix;
float veryneardist;
float neardist;
float middist;
float fardist;
float invScreenWidth;
float invScreenHeight;
float nearPlane;
};
layout (std140) uniform matrixData {
mat4 modelViewMatrix;
mat4 projMatrix;
};
layout (std140) uniform lightData {
vec3 diffuseLightColor;
float coneAngle;
vec3 lightDir;
float coneInnerAngle;
vec3 coneDir;
bool dualCone;
vec3 scale;
float lightRadius;
int lightType;
bool enable_shadows;
float sourceRadius;
};
// Nearest point sphere and tube light calculations taken from
// "Real Shading in Unreal Engine 4" by Brian Karis, Epic Games
// Part of SIGGRAPH 2013 Course: Physically Based Shading in Theory and Practice
vec3 ExpandLightSize(in vec3 lightDir, in vec3 reflectDir) {
// There's an extra max(...,sourceRadius) call here vs the version in the paper.
// This prevents the centerToRay calculation from choosing a point behind
// the reflection ray's origin (i.e. underneath the surface).
// this is necessary for situations where the fragment being shaded lies inside
// the sourceRadius of the light.
// Instead, we choose a point suffciently far away from the reflection origin (hence max(...,sourceRadius))
// so that we have a gradual transition as the shaded fragments along the surface
// shift from being inside to outside the light.
vec3 centerToRay = max(dot(lightDir, reflectDir),sourceRadius) * reflectDir - lightDir;
return lightDir + centerToRay * clamp(sourceRadius/length(centerToRay), 0.0, 1.0);
}
void GetLightInfo(vec3 position, in float alpha, in vec3 reflectDir, out vec3 lightDirOut, out float attenuation, out float area_normalisation)
{
if (lightType == LT_DIRECTIONAL) {
lightDirOut = normalize(lightDir);
attenuation = 1.0;
area_normalisation = 1.0;
} else {
vec3 lightPosition = modelViewMatrix[3].xyz;
// Positional light source
if (lightType == LT_POINT) {
lightDirOut = lightPosition - position.xyz;
float dist = length(lightDirOut);
// this chunk is unnecessary if sourceRadius= 0.0, but let's avoid a branch.
// given a sphere of radius sourceRadius centered at lightDirOut,
// move lightDirOut towards the ray defined by reflectDir
lightDirOut = ExpandLightSize(lightDirOut, reflectDir);
dist = length(lightDirOut);
// Energy conservation term
float alpha_adjust = clamp(alpha + (sourceRadius/(2*dist)), 0.0, 1.0);
area_normalisation = alpha/alpha_adjust;
area_normalisation *= area_normalisation;
//end chunk
if(dist > lightRadius) {
discard;
}
attenuation = 1.0 - clamp(sqrt(dist / lightRadius), 0.0, 1.0);
}
else if (lightType == LT_TUBE) { // Tube light
vec3 beamVec = vec3(modelViewMatrix * vec4(0.0, 0.0, -scale.z, 0.0));
vec3 beamDir = normalize(beamVec);
//The actual 'lighting element' is shorter than the light volume cylinder
//To compensate the light is moved forward along the beam one radius and the length shortened
//this allows room for clean falloff of the light past the ends of beams.
vec3 adjustedLightPos = lightPosition - (beamDir * lightRadius);
vec3 adjustedbeamVec = beamVec - 2.0 * lightRadius * beamDir;
float beamLength = length(adjustedbeamVec);
//adjustments having been made, sourceDir needs recalculating
vec3 sourceDir = adjustedLightPos - position.xyz;
// Get point on beam nearest to the reflection ray.
vec3 a_t = reflectDir;
vec3 b_t = beamDir;
vec3 b_0 = sourceDir;
vec3 c = cross(a_t, b_t);
vec3 d = b_0;
vec3 r = d - a_t * dot(d, a_t) - c * dot(d,c);
float neardist = dot(r, r)/dot(b_t, r);
// Move along the beam by the distance we calculated
lightDirOut = sourceDir - beamDir * clamp(neardist, 0.0, beamLength);
// Somebody with a symbolic expression simplifier or a wrinklier brain than me
// should figure out how to optimise these calcs - qaz
// this chunk is unnecessary if sourceRadius = 0.0, but let's avoid a branch.
// Same principle as in LT_POINT, treat chosen location as a spherelight.
lightDirOut = ExpandLightSize(lightDirOut, reflectDir);
float dist = length(lightDirOut);
// Energy conservation term
float alpha_adjust = min(alpha + (sourceRadius/(2*dist)), 1.0);
area_normalisation = alpha/alpha_adjust;
// don't need to square as it's a line rather than a sphere.
//end chunk
if(dist > lightRadius) {
discard;
}
attenuation = 1.0 - clamp(sqrt(dist / lightRadius), 0.0, 1.0);
}
else if (lightType == LT_CONE) {
lightDirOut = lightPosition - position.xyz;
float coneDot = dot(normalize(-lightDirOut), coneDir);
float dist = length(lightDirOut);
attenuation = 1.0 - clamp(sqrt(dist / lightRadius), 0.0, 1.0);
area_normalisation = 1.0;
if(dualCone) {
if(abs(coneDot) < coneAngle) {
discard;
} else {
attenuation *= smoothstep(coneAngle, coneInnerAngle, abs(coneDot));
}
} else {
if (coneDot < coneAngle) {
discard;
} else {
attenuation *= smoothstep(coneAngle, coneInnerAngle, coneDot);
}
}
}
attenuation *= attenuation;
lightDirOut = normalize(lightDirOut);
}
}
void main()
{
vec2 screenPos = gl_FragCoord.xy * vec2(invScreenWidth, invScreenHeight);
vec3 position = texture(PositionBuffer, screenPos).xyz;
if(abs(dot(position, position)) < nearPlane * nearPlane)
discard;
vec3 diffColor = texture(ColorBuffer, screenPos).rgb;
vec4 normalData = texture(NormalBuffer, screenPos);
vec4 specColor = texture(SpecBuffer, screenPos);
// The vector in the normal buffer could be longer than the unit vector since decal rendering only adds to the normal buffer
vec3 normal = normalize(normalData.xyz);
float gloss = normalData.a;
float roughness = clamp(1.0f - gloss, 0.0f, 1.0f);
float alpha = roughness * roughness;
float fresnel = specColor.a;
vec3 eyeDir = normalize(-position);
vec3 lightDir;
float attenuation;
float area_normalisation;
vec3 reflectDir = reflect(-eyeDir, normal);
GetLightInfo(position, alpha, reflectDir, lightDir, attenuation, area_normalisation);
if (enable_shadows) {
vec4 fragShadowPos = shadow_mv_matrix * inv_view_matrix * vec4(position, 1.0);
vec4 fragShadowUV[4];
fragShadowUV[0] = transformToShadowMap(shadow_proj_matrix[0], 0, fragShadowPos);
fragShadowUV[1] = transformToShadowMap(shadow_proj_matrix[1], 1, fragShadowPos);
fragShadowUV[2] = transformToShadowMap(shadow_proj_matrix[2], 2, fragShadowPos);
fragShadowUV[3] = transformToShadowMap(shadow_proj_matrix[3], 3, fragShadowPos);
attenuation *= getShadowValue(shadow_map, -position.z, fragShadowPos.z, fragShadowUV, fardist, middist,
neardist, veryneardist);
}
vec3 halfVec = normalize(lightDir + eyeDir);
float NdotL = clamp(dot(normal, lightDir), 0.0, 1.0);
vec4 fragmentColor = vec4(1.0);
fragmentColor.rgb = computeLighting(specColor.rgb, diffColor, lightDir, normal.xyz, halfVec, eyeDir, roughness, fresnel, NdotL).rgb * diffuseLightColor * attenuation * area_normalisation;
fragOut0 = max(fragmentColor, vec4(0.0));
}
|