1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
#ifndef _FSO_UTILITY_H
#define _FSO_UTILITY_H
#include <vector>
#include "globalincs/globals.h"
#include "globalincs/toolchain.h"
// Goober5000
// A sort for use with small or almost-sorted lists. Iteration time is O(n) for a fully-sorted list.
// This uses a type-safe version of the function prototype for stdlib's qsort, although the size is an int rather than a size_t (for the reasons that j is an int).
// The fncompare function should return <0, 0, or >0 as the left item is less than, equal to, or greater than the right item.
template <typename array_t, typename T>
void insertion_sort(array_t& array_base, int array_size, int (*fncompare)(const T*, const T*))
{
// NOTE: j *must* be a signed type because j reaches -1 and j+1 must be 0.
int i, j;
T *current, *current_buf;
// allocate space for the element being moved
// (Taylor says that for optimization purposes malloc/free should be used rather than vm_malloc/vm_free here)
current_buf = new T();
if (current_buf == nullptr)
{
UNREACHABLE("Malloc failed!");
return;
}
// loop
for (i = 1; i < array_size; i++)
{
// grab the current element
// this does a lazy move/copy because if the array is mostly sorted,
// there's no sense copying sorted items to their own places
bool lazily_copied = false;
current = &array_base[i];
// bump other elements toward the end of the array
for (j = i - 1; (j >= 0) && (fncompare(&array_base[j], current) > 0); j--)
{
if (!lazily_copied)
{
// this may look strange but it is just copying the data
// into the buffer, then pointing to the buffer
*current_buf = std::move(*current);
current = current_buf;
lazily_copied = true;
}
array_base[j + 1] = std::move(array_base[j]);
}
if (lazily_copied)
{
// insert the current element at the correct place
array_base[j + 1] = std::move(*current);
}
}
// free the allocated space
delete current_buf;
}
//
// See https://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance#C++
//
template<typename T>
typename T::size_type GeneralizedLevenshteinDistance(const T &source,
const T &target,
typename T::size_type insert_cost = 1,
typename T::size_type delete_cost = 1,
typename T::size_type replace_cost = 1) {
if (source.size() > target.size()) {
return GeneralizedLevenshteinDistance(target, source, delete_cost, insert_cost, replace_cost);
}
using TSizeType = typename T::size_type;
const TSizeType min_size = source.size(), max_size = target.size();
std::vector<TSizeType> lev_dist(min_size + 1);
lev_dist[0] = 0;
for (TSizeType i = 1; i <= min_size; ++i) {
lev_dist[i] = lev_dist[i - 1] + delete_cost;
}
for (TSizeType j = 1; j <= max_size; ++j) {
TSizeType previous_diagonal = lev_dist[0], previous_diagonal_save;
lev_dist[0] += insert_cost;
for (TSizeType i = 1; i <= min_size; ++i) {
previous_diagonal_save = lev_dist[i];
if (source[i - 1] == target[j - 1]) {
lev_dist[i] = previous_diagonal;
}
else {
lev_dist[i] = std::min(std::min(lev_dist[i - 1] + delete_cost, lev_dist[i] + insert_cost), previous_diagonal + replace_cost);
}
previous_diagonal = previous_diagonal_save;
}
}
return lev_dist[min_size];
}
// Lafiel
template<typename T>
typename T::size_type stringcost(const T& op, const T& input, typename T::size_type max_expected_length = NAME_LENGTH) {
using TSizeType = typename T::size_type;
if(input.empty())
return T::npos;
struct string_search_it {
TSizeType count;
TSizeType lastpos;
TSizeType cost;
};
std::vector<string_search_it> iterators;
//Go through the input. If we find it split up into parts, prefer things that are least split, and within this prefer things that are closer together
for (TSizeType i = 0; i < op.length(); i++) {
std::vector<string_search_it> insert;
for (auto& it : iterators) {
if (it.count < input.length() && op[i] == input[it.count]) {
//We found something. There may be a better match for this later, so only make a copy.
insert.emplace_back(string_search_it{it.count + 1, i, i - it.lastpos <= 1 ? it.cost : max_expected_length + i - it.lastpos - 1});
}
}
iterators.insert(iterators.end(), insert.begin(), insert.end());
if (op[i] == input[0])
iterators.emplace_back(string_search_it{1, i, i});
}
auto cost = T::npos;
for (const auto& it : iterators) {
//Things that are missing letters are considered worse by default
auto localcost = (input.length() - it.count) * (max_expected_length * max_expected_length) + it.cost;
if (localcost < cost)
cost = localcost;
}
return cost;
}
template <typename T>
int count_items_with_name(const char* name, const T* item_array, int num_items)
{
if (!name || !item_array)
return 0;
int count = 0;
for (int i = 0; i < num_items; ++i)
if (!stricmp(name, item_array[i].name))
++count;
return count;
}
template <typename T>
int count_items_with_name(const char* name, const T& item_vector)
{
if (!name)
return 0;
int count = 0;
for (const auto& item : item_vector)
if (!stricmp(name, item.name))
++count;
return count;
}
template <typename T>
int count_items_with_scp_string_name(const char* name, const T& item_vector)
{
if (!name)
return 0;
int count = 0;
for (const auto& item : item_vector)
if (!stricmp(name, item.name.c_str()))
++count;
return count;
}
template <typename VECTOR_T, typename ITEM_T, typename FIELD_T>
int find_item_with_field(const VECTOR_T& item_vector, FIELD_T ITEM_T::* field, const char* str)
{
if (!str)
return -1;
int index = 0;
for (const ITEM_T& item : item_vector)
{
if (!stricmp(item.*field, str))
return index;
else
++index;
}
return -1;
}
template <typename VECTOR_T, typename ITEM_T, typename FIELD_T>
int find_item_with_field(const VECTOR_T& item_vector, FIELD_T ITEM_T::* field, const SCP_string& str)
{
int index = 0;
for (const ITEM_T& item : item_vector)
{
if (lcase_equal(item.*field, str))
return index;
else
++index;
}
return -1;
}
template <typename VECTOR_T, typename ITEM_T, typename FIELD_T>
int find_item_with_field(const VECTOR_T& item_vector, FIELD_T ITEM_T::* field, const FIELD_T& search)
{
int index = 0;
for (const ITEM_T& item : item_vector)
{
if (item.*field == search)
return index;
else
++index;
}
return -1;
}
template <typename ITEM_T, typename FIELD_T>
int find_item_with_field(const ITEM_T* item_array, int num_items, FIELD_T ITEM_T::* field, const char* str)
{
if (!str)
return -1;
for (int i = 0; i < num_items; ++i)
if (!stricmp(item_array[i].*field, str))
return i;
return -1;
}
template <typename ITEM_T, typename FIELD_T>
int find_item_with_field(const ITEM_T* item_array, int num_items, FIELD_T ITEM_T::* field, const SCP_string& str)
{
for (int i = 0; i < num_items; ++i)
if (lcase_equal(item_array[i].*field, str))
return i;
return -1;
}
template <typename ITEM_T, typename FIELD_T>
int find_item_with_field(const ITEM_T* item_array, int num_items, FIELD_T ITEM_T::* field, const FIELD_T& search)
{
for (int i = 0; i < num_items; ++i)
if (item_array[i].*field == search)
return i;
return -1;
}
template <typename VECTOR_T>
int find_item_with_name(const VECTOR_T& item_vector, const char* str)
{
if (!str)
return -1;
int index = 0;
for (const auto& item : item_vector)
{
if (!stricmp(item.name, str))
return index;
else
++index;
}
return -1;
}
template <typename ITEM_T>
int find_item_with_name(const ITEM_T* item_array, int num_items, const char* str)
{
return find_item_with_field(item_array, num_items, &ITEM_T::name, str);
}
template <typename VECTOR_T>
int find_item_with_name(const VECTOR_T& item_vector, const SCP_string& str)
{
int index = 0;
for (const auto& item : item_vector)
{
if (lcase_equal(item.name, str))
return index;
else
++index;
}
return -1;
}
template <typename NULLISH_T>
NULLISH_T coalesce(NULLISH_T possibly_null, NULLISH_T value_if_null)
{
Assertion(value_if_null != nullptr, "value_if_null can never be null itself!");
return (possibly_null != nullptr) ? possibly_null : value_if_null;
}
#endif
|