1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
|
#include "gropengldeferred.h"
#include "globalincs/vmallocator.h"
#include "ShaderProgram.h"
#include "gropengldraw.h"
#include "gropenglstate.h"
#include "gropengltnl.h"
#include "graphics/2d.h"
#include "graphics/matrix.h"
#include "graphics/util/UniformAligner.h"
#include "graphics/util/UniformBuffer.h"
#include "graphics/util/uniform_structs.h"
#include "lighting/lighting.h"
#include "lighting/lighting_profiles.h"
#include "mission/mission_flags.h"
#include "mission/missionparse.h"
#include "nebula/neb.h"
#include "nebula/volumetrics.h"
#include "render/3d.h"
#include "tracing/tracing.h"
#include <math/bitarray.h>
void gr_opengl_deferred_init()
{
gr_opengl_deferred_light_cylinder_init(16);
gr_opengl_deferred_light_sphere_init(16, 16);
}
void gr_opengl_deferred_shutdown() {}
void opengl_clear_deferred_buffers()
{
GR_DEBUG_SCOPE("Clear deferred buffers");
GLboolean depth = GL_state.DepthTest(GL_FALSE);
GLboolean depth_mask = GL_state.DepthMask(GL_FALSE);
GLboolean blend = GL_state.Blend(GL_FALSE);
GLboolean cull = GL_state.CullFace(GL_FALSE);
GL_state.ColorMask(true, true, true, true);
opengl_shader_set_current( gr_opengl_maybe_create_shader(SDR_TYPE_DEFERRED_CLEAR, 0) );
opengl_draw_full_screen_textured(0.0f, 0.0f, 1.0f, 1.0f);
opengl_shader_set_current();
GL_state.ColorMask(true, true, true, false);
GL_state.DepthTest(depth);
GL_state.DepthMask(depth_mask);
GL_state.Blend(blend);
GL_state.CullFace(cull);
}
void gr_opengl_deferred_lighting_begin(bool clearNonColorBufs)
{
if (!light_deferred_enabled())
return;
static const float black[] = {0, 0, 0, 1.0f};
GR_DEBUG_SCOPE("Deferred lighting begin");
Deferred_lighting = true;
GL_state.ColorMask(true, true, true, true);
GLenum buffers[] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1, GL_COLOR_ATTACHMENT2, GL_COLOR_ATTACHMENT3, GL_COLOR_ATTACHMENT4, GL_COLOR_ATTACHMENT5 };
if (Cmdline_msaa_enabled > 0) {
//Ensure MSAA Mode if necessary
GL_state.BindFrameBuffer(Scene_framebuffer_ms);
glDrawBuffer(GL_COLOR_ATTACHMENT4);
opengl_shader_set_current(gr_opengl_maybe_create_shader(SDR_TYPE_COPY, 0));
GL_state.Texture.Enable(0, GL_TEXTURE_2D, Scene_color_texture);
Current_shader->program->Uniforms.setTextureUniform("tex", 0);
GL_state.SetAlphaBlendMode(gr_alpha_blend::ALPHA_BLEND_NONE);
GL_state.SetZbufferType(ZBUFFER_TYPE_NONE);
opengl_draw_full_screen_textured(0, 0, 1, 1);
} else {
// Copy the existing color data into the emissive part of the G-buffer since everything that already existed is
// treated as emissive
glDrawBuffer(GL_COLOR_ATTACHMENT4);
glReadBuffer(GL_COLOR_ATTACHMENT0);
glBlitFramebuffer(0, 0, gr_screen.max_w, gr_screen.max_h, 0, 0, gr_screen.max_w, gr_screen.max_h, GL_COLOR_BUFFER_BIT, GL_NEAREST);
}
glDrawBuffers(6, buffers);
glClearBufferfv(GL_COLOR, 0, black);
if (clearNonColorBufs) {
glClearBufferfv(GL_COLOR, 1, black);
glClearBufferfv(GL_COLOR, 2, black);
glClearBufferfv(GL_COLOR, 3, black);
glClearBufferfv(GL_COLOR, 5, black);
}
}
void gr_opengl_deferred_lighting_msaa()
{
if (!Deferred_lighting)
return;
if (Cmdline_msaa_enabled <= 0)
return;
GR_DEBUG_SCOPE("MSAA Pass");
GL_state.BindFrameBuffer(Scene_framebuffer);
GLenum buffers[] = {GL_COLOR_ATTACHMENT0,
GL_COLOR_ATTACHMENT1,
GL_COLOR_ATTACHMENT2,
GL_COLOR_ATTACHMENT3,
GL_COLOR_ATTACHMENT4};
glDrawBuffers(5, buffers);
int msaa_resolve_flags = 0;
switch (Cmdline_msaa_enabled) {
case 4:
msaa_resolve_flags = SDR_FLAG_MSAA_SAMPLES_4;
break;
case 8:
msaa_resolve_flags = SDR_FLAG_MSAA_SAMPLES_8;
break;
case 16:
msaa_resolve_flags = SDR_FLAG_MSAA_SAMPLES_16;
break;
default:
UNREACHABLE("Disallowed MSAA shader sample count!");
break;
}
opengl_shader_set_current(gr_opengl_maybe_create_shader(SDR_TYPE_MSAA_RESOLVE, msaa_resolve_flags));
GL_state.Texture.Enable(0, GL_TEXTURE_2D_MULTISAMPLE, Scene_color_texture_ms);
GL_state.Texture.Enable(1, GL_TEXTURE_2D_MULTISAMPLE, Scene_position_texture_ms);
GL_state.Texture.Enable(2, GL_TEXTURE_2D_MULTISAMPLE, Scene_normal_texture_ms);
GL_state.Texture.Enable(3, GL_TEXTURE_2D_MULTISAMPLE, Scene_specular_texture_ms);
GL_state.Texture.Enable(4, GL_TEXTURE_2D_MULTISAMPLE, Scene_emissive_texture_ms);
GL_state.Texture.Enable(5, GL_TEXTURE_2D_MULTISAMPLE, Scene_depth_texture_ms);
Current_shader->program->Uniforms.setTextureUniform("texColor", 0);
Current_shader->program->Uniforms.setTextureUniform("texPos", 1);
Current_shader->program->Uniforms.setTextureUniform("texNormal", 2);
Current_shader->program->Uniforms.setTextureUniform("texSpecular", 3);
Current_shader->program->Uniforms.setTextureUniform("texEmissive", 4);
Current_shader->program->Uniforms.setTextureUniform("texDepth", 5);
opengl_set_generic_uniform_data<graphics::generic_data::msaa_data>(
[&](graphics::generic_data::msaa_data* data) {
data->samples = Cmdline_msaa_enabled;
data->fov = g3_get_hfov(Proj_fov);
});
GL_state.SetAlphaBlendMode(gr_alpha_blend::ALPHA_BLEND_NONE);
GL_state.SetZbufferType(ZBUFFER_TYPE_WRITE);
opengl_draw_full_screen_textured(0, 0, 1, 1);
}
void gr_opengl_deferred_lighting_end()
{
if(!Deferred_lighting)
return;
GR_DEBUG_SCOPE("Deferred lighting end");
Deferred_lighting = false;
glDrawBuffer(GL_COLOR_ATTACHMENT0);
GL_state.ColorMask(true, true, true, false);
}
static GLuint deferred_light_cylinder_vbo = 0;
static GLuint deferred_light_cylinder_ibo = 0;
static GLushort deferred_light_cylinder_vcount = 0;
static GLuint deferred_light_cylinder_icount = 0;
static GLuint deferred_light_sphere_vbo = 0;
static GLuint deferred_light_sphere_ibo = 0;
static GLushort deferred_light_sphere_vcount = 0;
static GLuint deferred_light_sphere_icount = 0;
extern SCP_vector<light> Lights;
extern int Num_lights;
namespace ltp = lighting_profiles;
using namespace ltp;
static bool override_fog = false;
graphics::deferred_light_data*
// common conversion operations to translate a game light data structure into a render-ready light uniform.
prepare_light_uniforms(light& l, graphics::util::UniformAligner& uniformAligner)
{
graphics::deferred_light_data* light_data = uniformAligner.addTypedElement<graphics::deferred_light_data>();
light_data->lightType = static_cast<int>(l.type);
vec3d diffuse;
diffuse.xyz.x = l.r * l.intensity;
diffuse.xyz.y = l.g * l.intensity;
diffuse.xyz.z = l.b * l.intensity;
light_data->diffuseLightColor = diffuse;
// Set a default value for all lights. Only the first directional light will change this.
light_data->enable_shadows = false;
light_data->sourceRadius = l.source_radius;
return light_data;
}
void gr_opengl_deferred_lighting_finish()
{
GR_DEBUG_SCOPE("Deferred lighting finish");
TRACE_SCOPE(tracing::ApplyLights);
if (!light_deferred_enabled()) {
return;
}
GL_state.SetAlphaBlendMode(ALPHA_BLEND_ADDITIVE);
gr_zbuffer_set(GR_ZBUFF_NONE);
// GL_state.DepthFunc(GL_GREATER);
// GL_state.DepthMask(GL_FALSE);
opengl_shader_set_current(gr_opengl_maybe_create_shader(SDR_TYPE_DEFERRED_LIGHTING, 0));
// Render on top of the composite buffer texture
glDrawBuffer(GL_COLOR_ATTACHMENT5);
glReadBuffer(GL_COLOR_ATTACHMENT4);
glBlitFramebuffer(0,
0,
gr_screen.max_w,
gr_screen.max_h,
0,
0,
gr_screen.max_w,
gr_screen.max_h,
GL_COLOR_BUFFER_BIT,
GL_NEAREST);
GL_state.Texture.Enable(0, GL_TEXTURE_2D, Scene_color_texture);
GL_state.Texture.Enable(1, GL_TEXTURE_2D, Scene_normal_texture);
GL_state.Texture.Enable(2, GL_TEXTURE_2D, Scene_position_texture);
GL_state.Texture.Enable(3, GL_TEXTURE_2D, Scene_specular_texture);
if (Shadow_quality != ShadowQuality::Disabled) {
GL_state.Texture.Enable(4, GL_TEXTURE_2D_ARRAY, Shadow_map_texture);
}
// We need to use stable sorting here to make sure that the relative ordering of the same light types is the same as
// the rest of the code. Otherwise the shadow mapping would be applied while rendering the wrong light which would
// lead to flickering lights in some circumstances
std::stable_sort(Lights.begin(), Lights.end(), light_compare_by_type);
using namespace graphics;
// We need to precompute how many elements we are going to need
size_t num_data_elements = Lights.size();
// Get a uniform buffer for our data
auto light_buffer = gr_get_uniform_buffer(uniform_block_type::Lights, num_data_elements);
auto& light_uniform_aligner = light_buffer.aligner();
auto matrix_buffer = gr_get_uniform_buffer(uniform_block_type::Matrices, num_data_elements);
auto& matrix_uniform_aligner = matrix_buffer.aligner();
// This is the light which is responsible for shadows and volumetric nebula lighting
const light* global_light = nullptr;
vec3d global_light_diffuse;
// To allow reduced bind calls, we sort lights into subsets based on rendering methods.
// It might seem optimal to create these subsets as lights are added, or some other method,
// but this keeps the graphics implementation methods better contained and profiling currently
// (dec 2023) shows negligable cost of doing it this way.
SCP_vector<light> full_frame_lights = SCP_vector<light>();
SCP_vector<light> sphere_lights = SCP_vector<light>();
SCP_vector<light> cylinder_lights = SCP_vector<light>();
for (auto& l : Lights) {
switch (l.type) {
case Light_Type::Directional:
full_frame_lights.push_back(l);
break;
case Light_Type::Cone:
FALLTHROUGH;
case Light_Type::Point:
sphere_lights.push_back(l);
break;
case Light_Type::Tube:
cylinder_lights.push_back(l);
break;
}
}
{
GR_DEBUG_SCOPE("Build buffer data");
auto lp = ltp::current();
auto header = light_uniform_aligner.getHeader<deferred_global_data>();
if (Shadow_quality != ShadowQuality::Disabled) {
// Avoid this overhead when we are not going to use these values
header->shadow_mv_matrix = Shadow_view_matrix_light;
for (size_t i = 0; i < MAX_SHADOW_CASCADES; ++i) {
header->shadow_proj_matrix[i] = Shadow_proj_matrix[i];
}
header->veryneardist = Shadow_cascade_distances[0];
header->neardist = Shadow_cascade_distances[1];
header->middist = Shadow_cascade_distances[2];
header->fardist = Shadow_cascade_distances[3];
vm_inverse_matrix4(&header->inv_view_matrix, &Shadow_view_matrix_render);
}
header->invScreenWidth = 1.0f / gr_screen.max_w;
header->invScreenHeight = 1.0f / gr_screen.max_h;
header->nearPlane = gr_near_plane;
// Only the first directional light uses shaders so we need to know when we already saw that light
bool first_directional = true;
for (auto& l : full_frame_lights) {
auto light_data = prepare_light_uniforms(l, light_uniform_aligner);
if (Shadow_quality != ShadowQuality::Disabled) {
light_data->enable_shadows = first_directional ? 1 : 0;
}
// Global light direction should match shadow light direction
if (first_directional) {
global_light = &l;
global_light_diffuse = light_data->diffuseLightColor;
}
vec4 light_dir;
light_dir.xyzw.x = -l.vec.xyz.x;
light_dir.xyzw.y = -l.vec.xyz.y;
light_dir.xyzw.z = -l.vec.xyz.z;
light_dir.xyzw.w = 0.0f;
vec4 view_dir;
vm_vec_transform(&view_dir, &light_dir, &gr_view_matrix);
light_data->lightDir.xyz.x = view_dir.xyzw.x;
light_data->lightDir.xyz.y = view_dir.xyzw.y;
light_data->lightDir.xyz.z = view_dir.xyzw.z;
first_directional = false;
}
for (auto& l : sphere_lights) {
auto light_data = prepare_light_uniforms(l, light_uniform_aligner);
if (l.type == Light_Type::Cone) {
light_data->dualCone = (l.flags & LF_DUAL_CONE) ? 1.0f : 0.0f;
light_data->coneAngle = l.cone_angle;
light_data->coneInnerAngle = l.cone_inner_angle;
light_data->coneDir = l.vec2;
}
float rad = (Lighting_mode == lighting_mode::COCKPIT)
? lp->cockpit_light_radius_modifier.handle(MAX(l.rada, l.radb))
: MAX(l.rada, l.radb);
light_data->lightRadius = rad;
// A small padding factor is added to guard against potentially clipping the edges of the light with facets
// of the volume mesh.
light_data->scale.xyz.x = rad * 1.05f;
light_data->scale.xyz.y = rad * 1.05f;
light_data->scale.xyz.z = rad * 1.05f;
}
for (auto& l : cylinder_lights) {
auto light_data = prepare_light_uniforms(l, light_uniform_aligner);
float rad =
(Lighting_mode == lighting_mode::COCKPIT) ? lp->cockpit_light_radius_modifier.handle(l.radb) : l.radb;
light_data->lightRadius = rad;
light_data->lightType = LT_TUBE;
vec3d a;
vm_vec_sub(&a, &l.vec, &l.vec2);
auto length = vm_vec_mag(&a);
// Tube light volumes must be extended past the length of their requested light vector
// to allow smooth fall-off from all angles. Since the light volume starts at the mesh
// origin we must extend it here. Later the position will be adjusted as well.
length += light_data->lightRadius * 2.0f;
// A small padding factor is added to guard against potentially clipping the edges of the light with facets
// of the volume mesh.
light_data->scale.xyz.x = rad * 1.05f;
light_data->scale.xyz.y = rad * 1.05f;
light_data->scale.xyz.z = length;
}
// Uniform data has been assembled, upload it to the GPU and issue the draw calls
light_buffer.submitData();
}
{
for (size_t i = 0; i<full_frame_lights.size(); i++) {
// just keeping things aligned really.
matrix_uniform_aligner.addTypedElement<graphics::matrix_uniforms>();
}
for (auto& l : sphere_lights) {
auto matrix_data = matrix_uniform_aligner.addTypedElement<graphics::matrix_uniforms>();
g3_start_instance_matrix(&l.vec, &vmd_identity_matrix, true);
matrix_data->modelViewMatrix = gr_model_view_matrix;
matrix_data->projMatrix = gr_projection_matrix;
g3_done_instance(true);
}
for (auto& l : cylinder_lights ) {
auto matrix_data = matrix_uniform_aligner.addTypedElement<graphics::matrix_uniforms>();
vec3d dir, newPos;
matrix orient;
vm_vec_sub(&dir, &l.vec, &l.vec2);
vm_vector_2_matrix(&orient, &dir, nullptr, nullptr);
// Tube light volumes must be extended past the length of their requested light vector
// to allow smooth fall-off from all angles. Since the light volume starts at the mesh
// origin we must extend it, which has been done above, and then move it backwards one radius.
vm_vec_normalize(&dir);
vm_vec_scale_sub(&newPos, &l.vec2, &dir, l.radb);
g3_start_instance_matrix(&newPos, &orient, true);
matrix_data->modelViewMatrix = gr_model_view_matrix;
matrix_data->projMatrix = gr_projection_matrix;
g3_done_instance(true);
}
matrix_buffer.submitData();
}
{
GR_DEBUG_SCOPE("Render light geometry");
gr_bind_uniform_buffer(uniform_block_type::DeferredGlobals,
light_buffer.getBufferOffset(0),
sizeof(graphics::deferred_global_data),
light_buffer.bufferHandle());
gr_bind_uniform_buffer(uniform_block_type::Matrices,
matrix_buffer.getBufferOffset(0),
sizeof(graphics::matrix_uniforms),
matrix_buffer.bufferHandle());
size_t element_index = 0;
vertex_layout vertex_declare;
vertex_declare.add_vertex_component(vertex_format_data::POSITION3, sizeof(float) * 3, 0);
for (size_t i = 0; i<full_frame_lights.size(); i++) {
GR_DEBUG_SCOPE("Deferred apply single dir light");
gr_bind_uniform_buffer(uniform_block_type::Lights,
light_buffer.getAlignerElementOffset(element_index),
sizeof(graphics::deferred_light_data),
light_buffer.bufferHandle());
opengl_draw_full_screen_textured(0.0f, 0.0f, 1.0f, 1.0f);
++element_index;
}
if (!sphere_lights.empty()) {
opengl_bind_vertex_layout(vertex_declare, deferred_light_sphere_vbo, deferred_light_sphere_ibo);
}
for (size_t i = 0; i<sphere_lights.size(); i++) {
gr_bind_uniform_buffer(uniform_block_type::Lights,
light_buffer.getAlignerElementOffset(element_index),
sizeof(graphics::deferred_light_data),
light_buffer.bufferHandle());
gr_bind_uniform_buffer(uniform_block_type::Matrices,
matrix_buffer.getAlignerElementOffset(element_index),
sizeof(graphics::matrix_uniforms),
matrix_buffer.bufferHandle());
glDrawRangeElements(GL_TRIANGLES,
0,
deferred_light_sphere_vcount,
deferred_light_sphere_icount,
GL_UNSIGNED_SHORT,
0);
opengl_draw_sphere();
++element_index;
}
if (!cylinder_lights.empty()) {
opengl_bind_vertex_layout(vertex_declare, deferred_light_cylinder_vbo, deferred_light_cylinder_ibo);
}
for (size_t i = 0; i<cylinder_lights.size(); i++) {
gr_bind_uniform_buffer(uniform_block_type::Lights,
light_buffer.getAlignerElementOffset(element_index),
sizeof(graphics::deferred_light_data),
light_buffer.bufferHandle());
gr_bind_uniform_buffer(uniform_block_type::Matrices,
matrix_buffer.getAlignerElementOffset(element_index),
sizeof(graphics::matrix_uniforms),
matrix_buffer.bufferHandle());
glDrawRangeElements(GL_TRIANGLES,
0,
deferred_light_cylinder_vcount,
deferred_light_cylinder_icount,
GL_UNSIGNED_SHORT,
0);
++element_index;
}
}
gr_end_view_matrix();
gr_end_proj_matrix();
// Now reset back to drawing into the color buffer
glDrawBuffer(GL_COLOR_ATTACHMENT0);
if (The_mission.flags[Mission::Mission_Flags::Fullneb] && Neb2_render_mode != NEB2_RENDER_NONE && !override_fog) {
GL_state.SetAlphaBlendMode(ALPHA_BLEND_NONE);
gr_zbuffer_set(GR_ZBUFF_NONE);
opengl_shader_set_current(gr_opengl_maybe_create_shader(SDR_TYPE_SCENE_FOG, 0));
GL_state.Texture.Enable(0, GL_TEXTURE_2D, Scene_composite_texture);
GL_state.Texture.Enable(1, GL_TEXTURE_2D, Scene_depth_texture);
float fog_near, fog_far, fog_density;
neb2_get_adjusted_fog_values(&fog_near, &fog_far, &fog_density);
unsigned char r, g, b;
neb2_get_fog_color(&r, &g, &b);
Current_shader->program->Uniforms.setTextureUniform("tex", 0);
Current_shader->program->Uniforms.setTextureUniform("depth_tex", 1);
opengl_set_generic_uniform_data<graphics::generic_data::fog_data>([&](graphics::generic_data::fog_data* data) {
data->fog_start = fog_near;
data->fog_density = fog_density;
data->fog_color.xyz.x = r / 255.f;
data->fog_color.xyz.y = g / 255.f;
data->fog_color.xyz.z = b / 255.f;
data->zNear = Min_draw_distance;
data->zFar = Max_draw_distance;
});
opengl_draw_full_screen_textured(0.0f, 0.0f, 1.0f, 1.0f);
}
else if (The_mission.volumetrics && The_mission.volumetrics->get_enabled() && !override_fog) {
GR_DEBUG_SCOPE("Volumetric Nebulae");
TRACE_SCOPE(tracing::Volumetrics);
const volumetric_nebula& neb = *The_mission.volumetrics;
Assertion(neb.isVolumeBitmapValid(), "The volumetric nebula was not properly initialized!");
gr_set_proj_matrix(Proj_fov, gr_screen.clip_aspect, Min_draw_distance, Max_draw_distance);
gr_set_view_matrix(&Eye_position, &Eye_matrix);
GL_state.SetAlphaBlendMode(ALPHA_BLEND_NONE);
gr_zbuffer_set(GR_ZBUFF_NONE);
opengl_shader_set_current(gr_opengl_maybe_create_shader(SDR_TYPE_VOLUMETRIC_FOG,
(neb.getEdgeSmoothing() ? SDR_FLAG_VOLUMETRICS_DO_EDGE_SMOOTHING : 0) |
(neb.getNoiseActive() ? SDR_FLAG_VOLUMETRICS_NOISE : 0)
));
GL_state.Texture.Enable(0, GL_TEXTURE_2D, Scene_composite_texture);
GL_state.Texture.Enable(1, GL_TEXTURE_2D, Scene_emissive_texture);
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
GL_state.Texture.Enable(2, GL_TEXTURE_2D, Scene_depth_texture);
{
//The following are not required, but the graphics API still returns them
float u_scale, v_scale;
uint32_t array_index;
gr_set_texture_addressing(TMAP_ADDRESS_CLAMP);
gr_opengl_tcache_set(neb.getVolumeBitmapHandle(), TCACHE_TYPE_3DTEX, &u_scale, &v_scale, &array_index, 3);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
if (neb.getNoiseActive()) {
gr_set_texture_addressing(TMAP_ADDRESS_WRAP);
gr_opengl_tcache_set(neb.getNoiseVolumeBitmapHandle(), TCACHE_TYPE_3DTEX, &u_scale, &v_scale, &array_index, 4);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
}
}
opengl_set_generic_uniform_data<graphics::generic_data::volumetric_fog_data>([&](graphics::generic_data::volumetric_fog_data* data) {
vm_inverse_matrix4(&data->p_inv, &gr_projection_matrix);
vm_inverse_matrix4(&data->v_inv, &gr_view_matrix);
data->zNear = Min_draw_distance;
data->zFar = Max_draw_distance;
data->cameraPos = Eye_position;
data->globalLightDirection = global_light ? global_light->vec : vec3d(ZERO_VECTOR);
data->globalLightDiffuse = global_light_diffuse;
data->nebPos = neb.getPos();
data->nebSize = neb.getSize();
data->stepsize = neb.getStepsize();
data->opacitydistance = neb.getOpacityDistance();
data->alphalimit = neb.getAlphaLim();
data->nebColor[0] = std::get<0>(neb.getNebulaColor());
data->nebColor[1] = std::get<1>(neb.getNebulaColor());
data->nebColor[2] = std::get<2>(neb.getNebulaColor());
data->udfScale = neb.getUDFScale();
data->emissiveSpreadFactor = neb.getEmissiveSpread();
data->emissiveIntensity = neb.getEmissiveIntensity();
data->emissiveFalloff = neb.getEmissiveFalloff();
data->henyeyGreensteinCoeff = neb.getHenyeyGreensteinCoeff();
data->directionalLightSampleSteps = neb.getGlobalLightSteps();
data->directionalLightStepSize = neb.getGlobalLightStepsize();
data->noiseColor[0] = std::get<0>(neb.getNoiseColor());
data->noiseColor[1] = std::get<1>(neb.getNoiseColor());
data->noiseColor[2] = std::get<2>(neb.getNoiseColor());
data->noiseColorScale1 = std::get<0>(neb.getNoiseColorScale());
data->noiseColorScale2 = std::get<1>(neb.getNoiseColorScale());
data->noiseColorIntensity = neb.getNoiseColorIntensity();
data->aspect = gr_screen.clip_aspect;
data->fov = g3_get_hfov(Proj_fov);
});
{
GR_DEBUG_SCOPE("Volumetric Nebulae Draw");
opengl_draw_full_screen_textured(0.0f, 0.0f, 1.0f, 1.0f);
}
GL_state.Texture.Enable(Scene_emissive_texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
gr_end_view_matrix();
gr_end_proj_matrix();
}
else {
// Transfer the resolved lighting back to the color texture
// TODO: Maybe this could be improved so that it doesn't require the copy back operation?
glReadBuffer(GL_COLOR_ATTACHMENT5);
glBlitFramebuffer(0,
0,
gr_screen.max_w,
gr_screen.max_h,
0,
0,
gr_screen.max_w,
gr_screen.max_h,
GL_COLOR_BUFFER_BIT,
GL_NEAREST);
glReadBuffer(GL_COLOR_ATTACHMENT0);
}
gr_set_proj_matrix(Proj_fov, gr_screen.clip_aspect, Min_draw_distance, Max_draw_distance);
gr_set_view_matrix(&Eye_position, &Eye_matrix);
// reset state
gr_clear_states();
}
void gr_opengl_override_fog(bool set_override)
{
override_fog = set_override;
}
void gr_opengl_draw_deferred_light_sphere(const vec3d *position)
{
g3_start_instance_matrix(position, &vmd_identity_matrix, true);
gr_matrix_set_uniforms();
opengl_draw_sphere();
g3_done_instance(true);
}
void gr_opengl_deferred_light_cylinder_init(int segments) // Generate a VBO of a cylinder of radius and height 1.0f, based on code at http://www.ogre3d.org/tikiwiki/ManualSphereMeshes
{
unsigned int nVertex = (segments + 1) * 2 * 3 + 6; // Can someone verify this?
unsigned int nIndex = deferred_light_cylinder_icount = 12 * (segments + 1) - 6; //This too
float *Vertices = (float*)vm_malloc(sizeof(float) * nVertex);
float *pVertex = Vertices;
ushort *Indices = (ushort*)vm_malloc(sizeof(ushort) * nIndex);
ushort *pIndex = Indices;
float fDeltaSegAngle = (2.0f * PI / segments);
unsigned short wVerticeIndex = 0 ;
*pVertex++ = 0.0f;
*pVertex++ = 0.0f;
*pVertex++ = 0.0f;
wVerticeIndex ++;
*pVertex++ = 0.0f;
*pVertex++ = 0.0f;
*pVertex++ = 1.0f;
wVerticeIndex ++;
for( int ring = 0; ring <= 1; ring++ ) {
float z0 = (float)ring;
// Generate the group of segments for the current ring
for(int seg = 0; seg <= segments; seg++) {
float x0 = sinf(seg * fDeltaSegAngle);
float y0 = cosf(seg * fDeltaSegAngle);
// Add one vertex to the strip which makes up the cylinder
*pVertex++ = x0;
*pVertex++ = y0;
*pVertex++ = z0;
if (!ring) {
*pIndex++ = wVerticeIndex + (ushort)segments + 1;
*pIndex++ = wVerticeIndex;
*pIndex++ = wVerticeIndex + (ushort)segments;
*pIndex++ = wVerticeIndex + (ushort)segments + 1;
*pIndex++ = wVerticeIndex + 1;
*pIndex++ = wVerticeIndex;
if(seg != segments)
{
*pIndex++ = wVerticeIndex + 1;
*pIndex++ = wVerticeIndex;
*pIndex++ = 0;
}
wVerticeIndex ++;
}
else
{
if(seg != segments)
{
*pIndex++ = wVerticeIndex + 1;
*pIndex++ = wVerticeIndex;
*pIndex++ = 1;
wVerticeIndex ++;
}
}
}; // end for seg
} // end for ring
deferred_light_cylinder_vcount = wVerticeIndex;
glGetError();
glGenBuffers(1, &deferred_light_cylinder_vbo);
// make sure we have one
if (deferred_light_cylinder_vbo) {
glBindBuffer(GL_ARRAY_BUFFER, deferred_light_cylinder_vbo);
glBufferData(GL_ARRAY_BUFFER, nVertex * sizeof(float), Vertices, GL_STATIC_DRAW);
// just in case
if ( opengl_check_for_errors() ) {
glDeleteBuffers(1, &deferred_light_cylinder_vbo);
deferred_light_cylinder_vbo = 0;
vm_free(Indices);
Indices = nullptr;
vm_free(Vertices);
Vertices = nullptr;
return;
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
glGenBuffers(1, &deferred_light_cylinder_ibo);
// make sure we have one
if (deferred_light_cylinder_ibo) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, deferred_light_cylinder_ibo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, nIndex * sizeof(ushort), Indices, GL_STATIC_DRAW);
// just in case
if ( opengl_check_for_errors() ) {
glDeleteBuffers(1, &deferred_light_cylinder_ibo);
deferred_light_cylinder_ibo = 0;
vm_free(Indices);
Indices = nullptr;
vm_free(Vertices);
Vertices = nullptr;
return;
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
vm_free(Indices);
Indices = nullptr;
vm_free(Vertices);
Vertices = nullptr;
}
void gr_opengl_deferred_light_sphere_init(int rings, int segments) // Generate a VBO of a sphere of radius 1.0f, based on code at http://www.ogre3d.org/tikiwiki/ManualSphereMeshes
{
unsigned int nVertex = (rings + 1) * (segments+1) * 3;
unsigned int nIndex = deferred_light_sphere_icount = 6 * rings * (segments + 1);
float *Vertices = (float*)vm_malloc(sizeof(float) * nVertex);
float *pVertex = Vertices;
ushort *Indices = (ushort*)vm_malloc(sizeof(ushort) * nIndex);
ushort *pIndex = Indices;
float fDeltaRingAngle = (PI / rings);
float fDeltaSegAngle = (2.0f * PI / segments);
unsigned short wVerticeIndex = 0 ;
// Generate the group of rings for the sphere
for( int ring = 0; ring <= rings; ring++ ) {
float r0 = sinf (ring * fDeltaRingAngle);
float y0 = cosf (ring * fDeltaRingAngle);
// Generate the group of segments for the current ring
for(int seg = 0; seg <= segments; seg++) {
float x0 = r0 * sinf(seg * fDeltaSegAngle);
float z0 = r0 * cosf(seg * fDeltaSegAngle);
// Add one vertex to the strip which makes up the sphere
*pVertex++ = x0;
*pVertex++ = y0;
*pVertex++ = z0;
if (ring != rings) {
// each vertex (except the last) has six indices pointing to it
*pIndex++ = wVerticeIndex + (ushort)segments + 1;
*pIndex++ = wVerticeIndex;
*pIndex++ = wVerticeIndex + (ushort)segments;
*pIndex++ = wVerticeIndex + (ushort)segments + 1;
*pIndex++ = wVerticeIndex + 1;
*pIndex++ = wVerticeIndex;
wVerticeIndex ++;
}
}; // end for seg
} // end for ring
deferred_light_sphere_vcount = wVerticeIndex;
glGetError();
glGenBuffers(1, &deferred_light_sphere_vbo);
// make sure we have one
if (deferred_light_sphere_vbo) {
glBindBuffer(GL_ARRAY_BUFFER, deferred_light_sphere_vbo);
glBufferData(GL_ARRAY_BUFFER, nVertex * sizeof(float), Vertices, GL_STATIC_DRAW);
// just in case
if ( opengl_check_for_errors() ) {
glDeleteBuffers(1, &deferred_light_sphere_vbo);
deferred_light_sphere_vbo = 0;
vm_free(Vertices);
Vertices = nullptr;
vm_free(Indices);
Indices = nullptr;
return;
}
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
glGenBuffers(1, &deferred_light_sphere_ibo);
// make sure we have one
if (deferred_light_sphere_ibo) {
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, deferred_light_sphere_ibo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, nIndex * sizeof(ushort), Indices, GL_STATIC_DRAW);
// just in case
if ( opengl_check_for_errors() ) {
glDeleteBuffers(1, &deferred_light_sphere_ibo);
deferred_light_sphere_ibo = 0;
vm_free(Vertices);
Vertices = nullptr;
vm_free(Indices);
Indices = nullptr;
return;
}
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
vm_free(Vertices);
Vertices = nullptr;
vm_free(Indices);
Indices = nullptr;
}
void opengl_draw_sphere()
{
vertex_layout vertex_declare;
vertex_declare.add_vertex_component(vertex_format_data::POSITION3, sizeof(float) * 3, 0);
opengl_bind_vertex_layout(vertex_declare, deferred_light_sphere_vbo, deferred_light_sphere_ibo);
glDrawRangeElements(GL_TRIANGLES, 0, deferred_light_sphere_vcount, deferred_light_sphere_icount, GL_UNSIGNED_SHORT, 0);
}
void gr_opengl_draw_deferred_light_cylinder(const vec3d *position, const matrix *orient)
{
g3_start_instance_matrix(position, orient, true);
gr_matrix_set_uniforms();
vertex_layout vertex_declare;
vertex_declare.add_vertex_component(vertex_format_data::POSITION3, sizeof(float) * 3, 0);
opengl_bind_vertex_layout(vertex_declare, deferred_light_cylinder_vbo, deferred_light_cylinder_ibo);
glDrawRangeElements(GL_TRIANGLES, 0, deferred_light_cylinder_vcount, deferred_light_cylinder_icount, GL_UNSIGNED_SHORT, 0);
g3_done_instance(true);
}
|