File: volumetrics.cpp

package info (click to toggle)
freespace2 24.2.0%2Brepack-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 43,716 kB
  • sloc: cpp: 595,001; ansic: 21,741; python: 1,174; sh: 457; makefile: 248; xml: 181
file content (547 lines) | stat: -rw-r--r-- 18,261 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
#include "volumetrics.h"

#include "bmpman/bmpman.h"
#include "mission/missionparse.h"
#include "model/model.h"
#include "parse/parselo.h"
#include "render/3d.h"

#include <anl.h>

#define OFFSET_R 2
#define OFFSET_G 1
#define OFFSET_B 0
#define OFFSET_A 3
#define COLOR_3D_ARRAY_POS(n, color, x, y, z) (z * n * n * 4 + y * n * 4 + x * 4 + OFFSET_##color)

volumetric_nebula::volumetric_nebula() { }

volumetric_nebula& volumetric_nebula::parse_volumetric_nebula() {
	//This expects that parse_volumetric_nebula was called in an if(optional_string("Volumetrics")) or something
	stuff_string(hullPof, F_PATHNAME);

	//General Settings
	required_string("+Position:");
	stuff_vec3d(&pos);
	
	required_string("+Color:");
	int rgb[3];
	size_t number = stuff_int_list(rgb, 3);
	if (number != 3) {
		error_display(1, "Volumetric nebula color must be fully specified.");
		return *this;
	}
	nebulaColor = std::make_tuple(static_cast<float>(rgb[0]) / 255.0f, static_cast<float>(rgb[1]) / 255.0f , static_cast<float>(rgb[2]) / 255.0f);

	required_string("+Visibility Opacity:");
	stuff_float(&alphaLim);

	required_string("+Visibility Distance:");
	stuff_float(&opacityDistance);

	if(optional_string("+Steps:")) {
		stuff_int(&steps);
	}

	if (optional_string("+Resolution:")) {
		stuff_int(&resolution);
		if (resolution > 8) {
			error_display(0, "Volumetric nebula resolution was set to %d. Maximum is 8.", resolution);
			resolution = 8;
		}
	}

	if (optional_string("+Oversampling:")) {
		stuff_int(&oversampling);
	}

	//Lighting settings
	if (optional_string("+Heyney Greenstein Coefficient:")) {
		stuff_float(&henyeyGreensteinCoeff);
	}

	if (optional_string("+Sun Falloff Factor:")) {
		stuff_float(&globalLightDistanceFactor);
	}

	if (optional_string("+Sun Steps:")) {
		stuff_int(&globalLightSteps);
	}

	//Emissive settings
	if (optional_string("+Emissive Light Spread:")) {
		stuff_float(&emissiveSpread);
	}

	if (optional_string("+Emissive Light Intensity:")) {
		stuff_float(&emissiveIntensity);
	}

	if (optional_string("+Emissive Light Falloff:")) {
		stuff_float(&emissiveFalloff);
	}

	//Noise settings
	if (optional_string("+Noise:")) {
		noiseActive = true;

		required_string("+Scale:");
		float scale[2];
		number = stuff_float_list(scale, 2);
		if (number == 0) {
			error_display(1, "Volumetric nebula noise scale must have at least the base scale.");
			return *this;
		}
		else if (number == 1) {
			//Set smaller scale to about half, but with low-ish periodicity
			scale[1] = scale[0] * (14.0f / 25.0f);
		}
		noiseScale = std::make_tuple(scale[0], scale[1]);

		required_string("+Color:");
		number = stuff_int_list(rgb, 3);
		if (number != 3) {
			error_display(1, "Volumetric nebula noise color must be fully specified.");
			return *this;
		}
		noiseColor = std::make_tuple(static_cast<float>(rgb[0]) / 255.0f, static_cast<float>(rgb[1]) / 255.0f , static_cast<float>(rgb[2]) / 255.0f);

		if (optional_string("+Intensity:")) {
			stuff_float(&noiseColorIntensity);
		}

		if (optional_string("+Function Base:")) {
			SCP_string func;
			stuff_string(func, F_RAW);
			noiseColorFunc1 = std::move(func);
		}

		if (optional_string("+Function Sub:")) {
			SCP_string func;
			stuff_string(func, F_RAW);
			noiseColorFunc2 = std::move(func);
		}

		if (optional_string("+Resolution:")) {
			stuff_int(&noiseResolution);
			if (noiseResolution > 8) {
				error_display(0, "Volumetric nebula noise resolution was set to %d. Maximum is 8.", noiseResolution);
				noiseResolution = 8;
			}
		}
	}

	return *this;
}

volumetric_nebula::~volumetric_nebula() {
	if (volumeBitmapHandle >= 0) {
		bm_release(volumeBitmapHandle);
	}
	if (noiseVolumeBitmapHandle >= 0) {
		bm_release(noiseVolumeBitmapHandle);
	}
}

const vec3d& volumetric_nebula::getPos() const {
	return pos;
}

const vec3d& volumetric_nebula::getSize() const {
	return size;
}

const std::tuple<float, float, float>& volumetric_nebula::getNebulaColor() const {
	return nebulaColor;
}

bool volumetric_nebula::getEdgeSmoothing() const {
	return Detail.nebula_detail == MAX_DETAIL_LEVEL || doEdgeSmoothing; //Only for highest setting, or when the lab has an override.
}

int volumetric_nebula::getSteps() const {
	if (Detail.nebula_detail == 0)
		return 8;

	//Minimal setting (if not hard-set to 8) is steps / 2, max settings is steps.  Ensure it doesn't drop below 8, 10, 12, 14, 16.
	return std::max(steps * (MAX_DETAIL_LEVEL + 1) / (2 * (MAX_DETAIL_LEVEL + 1) - Detail.nebula_detail), 8 + 2 * Detail.nebula_detail);
}

int volumetric_nebula::getGlobalLightSteps() const {
	if (Detail.nebula_detail == 0)
		return 4;

	//Minimal setting (if not hard-set to 4) is globalLightSteps / 2, max settings is globalLightSteps. Ensure it doesn't drop below 4, 5, 6, 7, 8.
	return std::max(globalLightSteps * (MAX_DETAIL_LEVEL + 1) / (2 * (MAX_DETAIL_LEVEL + 1) - Detail.nebula_detail), 4 + Detail.nebula_detail);
}

float volumetric_nebula::getOpacityDistance() const {
	return opacityDistance;
}

float volumetric_nebula::getStepsize() const {
	return getOpacityDistance() / static_cast<float>(getSteps());
}

float volumetric_nebula::getAlphaLim() const {
	return alphaLim;
}

float volumetric_nebula::getEmissiveSpread() const {
	return emissiveSpread;
}

float volumetric_nebula::getEmissiveIntensity() const {
	return emissiveIntensity;
}

float volumetric_nebula::getEmissiveFalloff() const {
	return emissiveFalloff;
}

float volumetric_nebula::getHenyeyGreensteinCoeff() const {
	return henyeyGreensteinCoeff;
}

float volumetric_nebula::getGlobalLightDistanceFactor() const {
	return globalLightDistanceFactor;
}

float volumetric_nebula::getGlobalLightStepsize() const {
	return getOpacityDistance() / static_cast<float>(getGlobalLightSteps()) * getGlobalLightDistanceFactor();
}

bool volumetric_nebula::getNoiseActive() const {
	return noiseActive;
}

const std::tuple<float, float>& volumetric_nebula::getNoiseColorScale() const {
	return noiseScale;
}

const std::tuple<float, float, float>& volumetric_nebula::getNoiseColor() const {
	return noiseColor;
}

float volumetric_nebula::getNoiseColorIntensity() const {
	return noiseColorIntensity;
}

bool volumetric_nebula::isVolumeBitmapValid() const {
	return volumeBitmapHandle >= 0 && (!getNoiseActive() || noiseVolumeBitmapHandle >= 0);
}

static anl::CInstructionIndex getDefaultNoise(anl::CKernel& kernel, int seedOffset) {
	return kernel.translateDomain(
		kernel.bias(
			kernel.scaleDomain(kernel.valueBasis(kernel.constant(3), kernel.seed(seedOffset + 0)), kernel.constant(3)),
			kernel.scaleDomain(kernel.valueBasis(kernel.constant(3), kernel.seed(seedOffset + 1)), kernel.constant(8))),
		kernel.multiply(
			kernel.scaleDomain(kernel.simplexBasis(kernel.seed(seedOffset + 2)), kernel.constant(4)),
			kernel.constant(0.6)));
}

static anl::CInstructionIndex getCustomNoise(anl::CKernel& kernel, const SCP_string& expression) {
	anl::CExpressionBuilder builder(kernel);
	return builder.eval(expression);
}

static inline std::array<ivec3, 6> getNeighbors(const ivec3& pnt){
	return {
		ivec3{pnt.x+1, pnt.y, pnt.z},
		ivec3{pnt.x-1, pnt.y, pnt.z},
		ivec3{pnt.x, pnt.y+1, pnt.z},
		ivec3{pnt.x, pnt.y-1, pnt.z},
		ivec3{pnt.x, pnt.y, pnt.z+1},
		ivec3{pnt.x, pnt.y, pnt.z-1}
	};
}

//Nebula distance must be a lower bound to avoid errors, so subtract sqrt(2) in each dimension
static inline float getNebDistSquared(const ivec3& l, const ivec3& r, const vec3d& scale, bool lowerBound) {
	int dx = (l.x - r.x) * (l.x - r.x);
	int dy = (l.y - r.y) * (l.y - r.y);
	int dz = (l.z - r.z) * (l.z - r.z);

	if (lowerBound){
		dx -= 2;
		dy -= 2;
		dz -= 2;
	}

	return (dx < 0 ? 0 : dx) * scale.xyz.x * scale.xyz.x + (dy < 0 ? 0 : dy) * scale.xyz.y * scale.xyz.y + (dz < 0 ? 0 : dz) * scale.xyz.z * scale.xyz.z;
}

void volumetric_nebula::renderVolumeBitmap() {
	Assertion(!hullPof.empty(), "Volumetric Nebula was not properly configured. Did you call parse_volumetric_nebula()?");
	Assertion(!isVolumeBitmapValid(), "Volume bitmap was already rendered!");

	int n = 1 << resolution;
	int nSample = (n << (oversampling - 1)) + 1;
	auto volumeSampleCache = make_unique<bool[]>(nSample * nSample * nSample);

	int modelnum = model_load(hullPof.c_str(), 0, nullptr);

	const polymodel* pm = model_get(modelnum);
	//Scale up by 2% to ensure that the 3d volume texture does not end on an axis aligned edge with full opacity.
	constexpr float scaleFactor = 1.02f;
	size = pm->maxs - pm->mins;
	size *= scaleFactor;

	bb_min = pos - (size * 0.5f);
	bb_max = pos + (size * 0.5f);

	mc_info mc;

	mc.model_num = modelnum;
	mc.orient = &vmd_identity_matrix;
	mc.pos = &vmd_zero_vector;
	mc.p1 = &vmd_zero_vector;

	mc.flags = MC_CHECK_MODEL | MC_COLLIDE_ALL | MC_CHECK_INVISIBLE_FACES;

	//Calculate minimum "bottom left" corner of scaled size box
	vec3d bl = pm->mins - (size * ((scaleFactor - 1.0f) / 2.0f / scaleFactor));

	//Go through sampling procedure to test where the nebula even is
	for (int x = 0; x < nSample; x++) {
		for (int y = 0; y < nSample; y++) {
			vec3d start = bl;
			start += vec3d{ {{static_cast<float>(x) * size.xyz.x / static_cast<float>(n << (oversampling - 1)),
							 static_cast<float>(y) * size.xyz.y / static_cast<float>(n << (oversampling - 1)),
							 0.0f }} };
			vec3d end = start;
			end.xyz.z += size.xyz.z;

			mc.p0 = &start;
			mc.p1 = &end;
			mc.hit_points_all.clear();
			mc.hit_submodels_all.clear();
			model_collide(&mc);

			//Annoying hack cause sometimes, if edges of polygons get too close to the ray, the collisions are missed / too many. At least find odd rays and fix those, since these are very visible
			while (mc.hit_points_all.size() % 2 != 0) {
				start += vec3d{ {{ size.xyz.x / static_cast<float>(n << (oversampling - 1)) * (Random::INV_F_MAX_VALUE * Random::next() - 0.5f),
								  size.xyz.y / static_cast<float>(n << (oversampling - 1)) * (Random::INV_F_MAX_VALUE * Random::next() - 0.5f), 0.0f }} };
				end += vec3d{ {{ size.xyz.x / static_cast<float>(n << (oversampling - 1)) * (Random::INV_F_MAX_VALUE * Random::next() - 0.5f),
								size.xyz.y / static_cast<float>(n << (oversampling - 1)) * (Random::INV_F_MAX_VALUE * Random::next() - 0.5f), 0.0f }} };
				mc.hit_points_all.clear();
				mc.hit_submodels_all.clear();
				model_collide(&mc);
			}

			SCP_multiset<int> collisionZIndices;
			for(const vec3d& hitpnt : mc.hit_points_all)
				collisionZIndices.emplace(static_cast<int>((hitpnt.xyz.z - bl.xyz.z) / size.xyz.z * static_cast<float>(n << (oversampling - 1))));

			size_t hitcnt = 0;
			auto hitpntit = collisionZIndices.cbegin();
			for (int z = 0; z < nSample; z++) {
				while (hitpntit != collisionZIndices.cend() && *hitpntit < z) {
					++hitpntit;
					++hitcnt;
				}
				volumeSampleCache[x * nSample * nSample + y * nSample + z] = hitcnt % 2 != 0;
			}
		}
	}

	model_unload(modelnum);

	//Sample the nebula values from the binary cubegrid.
	volumeBitmapData = make_unique<ubyte[]>(n * n * n * 4);
	int oversamplingCount = (1 << (oversampling - 1)) + 1;
	float oversamplingDivisor = 255.1f / static_cast<float>(oversamplingCount);
	for (int x = 0; x < n; x++) {
		for (int y = 0; y < n; y++) {
			for (int z = 0; z < n; z++) {
				int sum = 0;
				for (int sx = x * oversampling; sx <= (x + 1) * oversampling; sx++) {
					for (int sy = y * oversampling; sy <= (y + 1) * oversampling; sy++) {
						for (int sz = z * oversampling; sz <= (z + 1) * oversampling; sz++) {
							if (volumeSampleCache[sx * nSample * nSample + sy * nSample + sz])
								sum++;
						}
					}
				}

				volumeBitmapData[COLOR_3D_ARRAY_POS(n, A, x, y, z)] = static_cast<ubyte>(static_cast<float>(sum) * oversamplingDivisor);
			}
		}
	}

	// Test for edges in the nebula to compute the UDF
	auto volumeEdgeCache = make_unique<ivec3[]>(n * n * n);
	SCP_set<ivec3> udfBFS_checking, udfBFS_to_check;

	for (int x = 0; x < n; x++) {
		for (int y = 0; y < n; y++) {
			for (int z = 0; z < n; z++) {
				const ubyte& nebula_density = volumeBitmapData[COLOR_3D_ARRAY_POS(n, A, x, y, z)];

				//If we have neither full nor no nebula presence, it's an edge.
				if (nebula_density > 0 && nebula_density < 255) {
					udfBFS_to_check.emplace(ivec3{x, y, z});
					volumeEdgeCache[x * n * n + y * n + z] = ivec3{x, y, z};
				}
				else {
					bool found_edge = false;
					//it's possible that we get completely sharp edges. So test for that.
					for (const ivec3& neighbor : getNeighbors({x, y, z})){
						if (neighbor.x < 0 || neighbor.x >= n || neighbor.y < 0 || neighbor.y >= n || neighbor.z < 0 || neighbor.z >= n)
							continue;

						if (nebula_density != volumeBitmapData[COLOR_3D_ARRAY_POS(n, A, neighbor.x, neighbor.y, neighbor.z)]){
							found_edge = true;
							break;
						}
					}

					if (found_edge) {
						udfBFS_to_check.emplace(ivec3{x, y, z});
						volumeEdgeCache[x * n * n + y * n + z] = ivec3{x, y, z};
					}
					else
						volumeEdgeCache[x * n * n + y * n + z] = ivec3{-1, -1, -1};
				}
			}
		}
	}

	//BFS from the known nebula edges to find the distance to the closest edge
	while(!udfBFS_to_check.empty()){
		udfBFS_checking = udfBFS_to_check;
		udfBFS_to_check.clear();

		for (const ivec3& toCheck : udfBFS_checking){
			const ivec3& closestEdgeTile = volumeEdgeCache[toCheck.x * n * n + toCheck.y * n + toCheck.z];

			for (const ivec3& neighbor : getNeighbors(toCheck)) {
				if (neighbor.x < 0 || neighbor.x >= n || neighbor.y < 0 || neighbor.y >= n || neighbor.z < 0 || neighbor.z >= n)
					continue;

				ivec3& neighborClosestEdgeTile = volumeEdgeCache[neighbor.x * n * n + neighbor.y * n + neighbor.z];

				if (neighborClosestEdgeTile.x < 0 || getNebDistSquared(neighbor, closestEdgeTile, size, false) < getNebDistSquared(neighbor, neighborClosestEdgeTile, size, false)) {
					neighborClosestEdgeTile = closestEdgeTile;
					udfBFS_to_check.emplace(neighbor);
				}
			}
		}
	}

	//Compute the actual UDF from the BFS
	//scale is the maximal distance possible.
	udfScale = vm_vec_mag(&size);
	for (int x = 0; x < n; x++) {
		for (int y = 0; y < n; y++) {
			for (int z = 0; z < n; z++) {
				float dist = sqrtf(getNebDistSquared(ivec3{x, y, z}, volumeEdgeCache[x * n * n + y * n + z], size, true)) / static_cast<float>(n); //in meters
				volumeBitmapData[COLOR_3D_ARRAY_POS(n, R, x, y, z)] = static_cast<ubyte>(dist / udfScale * 255.0f); //UDF
				volumeBitmapData[COLOR_3D_ARRAY_POS(n, G, x, y, z)] = 0; // Reserved
				volumeBitmapData[COLOR_3D_ARRAY_POS(n, B, x, y, z)] = 0; // Reserved
			}
		}
	}

	volumeBitmapHandle = bm_create_3d(32, n, n, n, volumeBitmapData.get());

	if (!noiseActive)
		return;

	int nNoise = 1 << noiseResolution;
	noiseVolumeBitmapData = make_unique<ubyte[]>(nNoise * nNoise * nNoise * 4);

	anl::CKernel kernel;

	anl::CArray3Dd img(nNoise, nNoise, nNoise), img2(nNoise, nNoise, nNoise);
	anl::SMappingRanges ranges(
		0.0f, 1.0f,
		0.0f, 1.0f,
		0.0f, 1.0f);

	anl::CInstructionIndex wispyNoise = noiseColorFunc1 ? getCustomNoise(kernel, *noiseColorFunc1) : getDefaultNoise(kernel, 0);
	anl::CInstructionIndex wispyNoise2 = noiseColorFunc2 ? getCustomNoise(kernel, *noiseColorFunc2) : getDefaultNoise(kernel, 3);

	anl::map3D(anl::SEAMLESS_XYZ, img, kernel, ranges, wispyNoise);
	anl::map3D(anl::SEAMLESS_XYZ, img2, kernel, ranges, wispyNoise2);

	for (int x = 0; x < nNoise; x++) {
		for (int y = 0; y < nNoise; y++) {
			for (int z = 0; z < nNoise; z++) {
				const auto& noisePixel = img.get(x, y, z);
				const auto& noisePixel2 = img2.get(x, y, z);
				noiseVolumeBitmapData[COLOR_3D_ARRAY_POS(nNoise, R, x, y, z)] = static_cast<ubyte>(noisePixel * 255.0f); // R. Color noise 1, sampled at detail 1
				noiseVolumeBitmapData[COLOR_3D_ARRAY_POS(nNoise, G, x, y, z)] = static_cast<ubyte>(noisePixel2 * 255.0f); // G. Color noise 2, sampled at detail 2
				noiseVolumeBitmapData[COLOR_3D_ARRAY_POS(nNoise, B, x, y, z)] = 0; // B. Reserved for surface noise
				noiseVolumeBitmapData[COLOR_3D_ARRAY_POS(nNoise, A, x, y, z)] = 0; // A. Reserved for surface noise.
			}
		}
	}
	noiseVolumeBitmapHandle = bm_create_3d(32, nNoise, nNoise, nNoise, noiseVolumeBitmapData.get());
}

int volumetric_nebula::getVolumeBitmapHandle() const {
	Assertion(volumeBitmapHandle >= 0, "Tried to access volume bitmap without creating it!");
	return volumeBitmapHandle;
}

int volumetric_nebula::getNoiseVolumeBitmapHandle() const {
	Assertion(noiseVolumeBitmapHandle >= 0, "Tried to access noise volume bitmap without creating it!");
	return noiseVolumeBitmapHandle;
}

float volumetric_nebula::getUDFScale() const {
	return udfScale;
}

float volumetric_nebula::getAlphaToPos(const vec3d& pnt, float distance_mult) const {
	// This pretty much emulates the volumetric shader. This could be slow, so I hope it's not needed too often
	vec3d ray_direction;
	float maxTmin = 0;
	float minTmax = vm_vec_normalized_dir(&ray_direction, &pnt, &Eye_position);

	vec3d t1 = (bb_min - Eye_position) / ray_direction;
	vec3d t2 = (bb_max - Eye_position) / ray_direction;

	for (size_t i = 0; i < 3; i++) {
		std::pair<const float&, const float&> tmin_tmax = t1.a1d[i] < t2.a1d[i] ? 
			std::pair<const float&, const float&>{t1.a1d[i], t2.a1d[i]} : 
			std::pair<const float&, const float&>{t2.a1d[i], t1.a1d[i]};
		
		maxTmin = MAX(maxTmin, tmin_tmax.first);
		minTmax = MIN(minTmax, tmin_tmax.second);
	}

	float alpha = 1.0f;
	const float stepalpha = -(powf(getAlphaLim(), 1.0f / (getOpacityDistance() / getStepsize())) - 1.0f);
	const int n = 1 << resolution;
	for (float stept = maxTmin; stept < minTmax; stept += getStepsize()) {
		vec3d localpos = (Eye_position + (ray_direction * stept) - bb_min) / size * static_cast<float>(n);
		int x = static_cast<int>(localpos.xyz.x);
		int y = static_cast<int>(localpos.xyz.y);
		int z = static_cast<int>(localpos.xyz.z);
		CLAMP(x, 0, n - 1);
		CLAMP(y, 0, n - 1);
		CLAMP(z, 0, n - 1);
		alpha *= 1.0f - (stepalpha * (static_cast<float>(volumeBitmapData[COLOR_3D_ARRAY_POS(n, A, x, y, z)]) / 255.0f) / distance_mult);

		if (alpha <= alphaLim)
			break;
	}
	
	CLAMP(alpha, 0.0f, 1.0f);
	return alpha;
}

void volumetric_nebula::set_enabled(bool set_enabled){
	enabled = set_enabled;
}
bool volumetric_nebula::get_enabled() const {
	return enabled;
};

void volumetrics_level_close() {
	if (The_mission.volumetrics)
		The_mission.volumetrics.reset();
}