1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
|
#include "volumetrics.h"
#include "bmpman/bmpman.h"
#include "mission/missionparse.h"
#include "model/model.h"
#include "parse/parselo.h"
#include "render/3d.h"
#include <anl.h>
#define OFFSET_R 2
#define OFFSET_G 1
#define OFFSET_B 0
#define OFFSET_A 3
#define COLOR_3D_ARRAY_POS(n, color, x, y, z) (z * n * n * 4 + y * n * 4 + x * 4 + OFFSET_##color)
volumetric_nebula::volumetric_nebula() { }
volumetric_nebula& volumetric_nebula::parse_volumetric_nebula() {
//This expects that parse_volumetric_nebula was called in an if(optional_string("Volumetrics")) or something
stuff_string(hullPof, F_PATHNAME);
//General Settings
required_string("+Position:");
stuff_vec3d(&pos);
required_string("+Color:");
int rgb[3];
size_t number = stuff_int_list(rgb, 3);
if (number != 3) {
error_display(1, "Volumetric nebula color must be fully specified.");
return *this;
}
nebulaColor = std::make_tuple(static_cast<float>(rgb[0]) / 255.0f, static_cast<float>(rgb[1]) / 255.0f , static_cast<float>(rgb[2]) / 255.0f);
required_string("+Visibility Opacity:");
stuff_float(&alphaLim);
required_string("+Visibility Distance:");
stuff_float(&opacityDistance);
if(optional_string("+Steps:")) {
stuff_int(&steps);
}
if (optional_string("+Resolution:")) {
stuff_int(&resolution);
if (resolution > 8) {
error_display(0, "Volumetric nebula resolution was set to %d. Maximum is 8.", resolution);
resolution = 8;
}
}
if (optional_string("+Oversampling:")) {
stuff_int(&oversampling);
}
//Lighting settings
if (optional_string("+Heyney Greenstein Coefficient:")) {
stuff_float(&henyeyGreensteinCoeff);
}
if (optional_string("+Sun Falloff Factor:")) {
stuff_float(&globalLightDistanceFactor);
}
if (optional_string("+Sun Steps:")) {
stuff_int(&globalLightSteps);
}
//Emissive settings
if (optional_string("+Emissive Light Spread:")) {
stuff_float(&emissiveSpread);
}
if (optional_string("+Emissive Light Intensity:")) {
stuff_float(&emissiveIntensity);
}
if (optional_string("+Emissive Light Falloff:")) {
stuff_float(&emissiveFalloff);
}
//Noise settings
if (optional_string("+Noise:")) {
noiseActive = true;
required_string("+Scale:");
float scale[2];
number = stuff_float_list(scale, 2);
if (number == 0) {
error_display(1, "Volumetric nebula noise scale must have at least the base scale.");
return *this;
}
else if (number == 1) {
//Set smaller scale to about half, but with low-ish periodicity
scale[1] = scale[0] * (14.0f / 25.0f);
}
noiseScale = std::make_tuple(scale[0], scale[1]);
required_string("+Color:");
number = stuff_int_list(rgb, 3);
if (number != 3) {
error_display(1, "Volumetric nebula noise color must be fully specified.");
return *this;
}
noiseColor = std::make_tuple(static_cast<float>(rgb[0]) / 255.0f, static_cast<float>(rgb[1]) / 255.0f , static_cast<float>(rgb[2]) / 255.0f);
if (optional_string("+Intensity:")) {
stuff_float(&noiseColorIntensity);
}
if (optional_string("+Function Base:")) {
SCP_string func;
stuff_string(func, F_RAW);
noiseColorFunc1 = std::move(func);
}
if (optional_string("+Function Sub:")) {
SCP_string func;
stuff_string(func, F_RAW);
noiseColorFunc2 = std::move(func);
}
if (optional_string("+Resolution:")) {
stuff_int(&noiseResolution);
if (noiseResolution > 8) {
error_display(0, "Volumetric nebula noise resolution was set to %d. Maximum is 8.", noiseResolution);
noiseResolution = 8;
}
}
}
return *this;
}
volumetric_nebula::~volumetric_nebula() {
if (volumeBitmapHandle >= 0) {
bm_release(volumeBitmapHandle);
}
if (noiseVolumeBitmapHandle >= 0) {
bm_release(noiseVolumeBitmapHandle);
}
}
const vec3d& volumetric_nebula::getPos() const {
return pos;
}
const vec3d& volumetric_nebula::getSize() const {
return size;
}
const std::tuple<float, float, float>& volumetric_nebula::getNebulaColor() const {
return nebulaColor;
}
bool volumetric_nebula::getEdgeSmoothing() const {
return Detail.nebula_detail == MAX_DETAIL_LEVEL || doEdgeSmoothing; //Only for highest setting, or when the lab has an override.
}
int volumetric_nebula::getSteps() const {
if (Detail.nebula_detail == 0)
return 8;
//Minimal setting (if not hard-set to 8) is steps / 2, max settings is steps. Ensure it doesn't drop below 8, 10, 12, 14, 16.
return std::max(steps * (MAX_DETAIL_LEVEL + 1) / (2 * (MAX_DETAIL_LEVEL + 1) - Detail.nebula_detail), 8 + 2 * Detail.nebula_detail);
}
int volumetric_nebula::getGlobalLightSteps() const {
if (Detail.nebula_detail == 0)
return 4;
//Minimal setting (if not hard-set to 4) is globalLightSteps / 2, max settings is globalLightSteps. Ensure it doesn't drop below 4, 5, 6, 7, 8.
return std::max(globalLightSteps * (MAX_DETAIL_LEVEL + 1) / (2 * (MAX_DETAIL_LEVEL + 1) - Detail.nebula_detail), 4 + Detail.nebula_detail);
}
float volumetric_nebula::getOpacityDistance() const {
return opacityDistance;
}
float volumetric_nebula::getStepsize() const {
return getOpacityDistance() / static_cast<float>(getSteps());
}
float volumetric_nebula::getAlphaLim() const {
return alphaLim;
}
float volumetric_nebula::getEmissiveSpread() const {
return emissiveSpread;
}
float volumetric_nebula::getEmissiveIntensity() const {
return emissiveIntensity;
}
float volumetric_nebula::getEmissiveFalloff() const {
return emissiveFalloff;
}
float volumetric_nebula::getHenyeyGreensteinCoeff() const {
return henyeyGreensteinCoeff;
}
float volumetric_nebula::getGlobalLightDistanceFactor() const {
return globalLightDistanceFactor;
}
float volumetric_nebula::getGlobalLightStepsize() const {
return getOpacityDistance() / static_cast<float>(getGlobalLightSteps()) * getGlobalLightDistanceFactor();
}
bool volumetric_nebula::getNoiseActive() const {
return noiseActive;
}
const std::tuple<float, float>& volumetric_nebula::getNoiseColorScale() const {
return noiseScale;
}
const std::tuple<float, float, float>& volumetric_nebula::getNoiseColor() const {
return noiseColor;
}
float volumetric_nebula::getNoiseColorIntensity() const {
return noiseColorIntensity;
}
bool volumetric_nebula::isVolumeBitmapValid() const {
return volumeBitmapHandle >= 0 && (!getNoiseActive() || noiseVolumeBitmapHandle >= 0);
}
static anl::CInstructionIndex getDefaultNoise(anl::CKernel& kernel, int seedOffset) {
return kernel.translateDomain(
kernel.bias(
kernel.scaleDomain(kernel.valueBasis(kernel.constant(3), kernel.seed(seedOffset + 0)), kernel.constant(3)),
kernel.scaleDomain(kernel.valueBasis(kernel.constant(3), kernel.seed(seedOffset + 1)), kernel.constant(8))),
kernel.multiply(
kernel.scaleDomain(kernel.simplexBasis(kernel.seed(seedOffset + 2)), kernel.constant(4)),
kernel.constant(0.6)));
}
static anl::CInstructionIndex getCustomNoise(anl::CKernel& kernel, const SCP_string& expression) {
anl::CExpressionBuilder builder(kernel);
return builder.eval(expression);
}
static inline std::array<ivec3, 6> getNeighbors(const ivec3& pnt){
return {
ivec3{pnt.x+1, pnt.y, pnt.z},
ivec3{pnt.x-1, pnt.y, pnt.z},
ivec3{pnt.x, pnt.y+1, pnt.z},
ivec3{pnt.x, pnt.y-1, pnt.z},
ivec3{pnt.x, pnt.y, pnt.z+1},
ivec3{pnt.x, pnt.y, pnt.z-1}
};
}
//Nebula distance must be a lower bound to avoid errors, so subtract sqrt(2) in each dimension
static inline float getNebDistSquared(const ivec3& l, const ivec3& r, const vec3d& scale, bool lowerBound) {
int dx = (l.x - r.x) * (l.x - r.x);
int dy = (l.y - r.y) * (l.y - r.y);
int dz = (l.z - r.z) * (l.z - r.z);
if (lowerBound){
dx -= 2;
dy -= 2;
dz -= 2;
}
return (dx < 0 ? 0 : dx) * scale.xyz.x * scale.xyz.x + (dy < 0 ? 0 : dy) * scale.xyz.y * scale.xyz.y + (dz < 0 ? 0 : dz) * scale.xyz.z * scale.xyz.z;
}
void volumetric_nebula::renderVolumeBitmap() {
Assertion(!hullPof.empty(), "Volumetric Nebula was not properly configured. Did you call parse_volumetric_nebula()?");
Assertion(!isVolumeBitmapValid(), "Volume bitmap was already rendered!");
int n = 1 << resolution;
int nSample = (n << (oversampling - 1)) + 1;
auto volumeSampleCache = make_unique<bool[]>(nSample * nSample * nSample);
int modelnum = model_load(hullPof.c_str(), 0, nullptr);
const polymodel* pm = model_get(modelnum);
//Scale up by 2% to ensure that the 3d volume texture does not end on an axis aligned edge with full opacity.
constexpr float scaleFactor = 1.02f;
size = pm->maxs - pm->mins;
size *= scaleFactor;
bb_min = pos - (size * 0.5f);
bb_max = pos + (size * 0.5f);
mc_info mc;
mc.model_num = modelnum;
mc.orient = &vmd_identity_matrix;
mc.pos = &vmd_zero_vector;
mc.p1 = &vmd_zero_vector;
mc.flags = MC_CHECK_MODEL | MC_COLLIDE_ALL | MC_CHECK_INVISIBLE_FACES;
//Calculate minimum "bottom left" corner of scaled size box
vec3d bl = pm->mins - (size * ((scaleFactor - 1.0f) / 2.0f / scaleFactor));
//Go through sampling procedure to test where the nebula even is
for (int x = 0; x < nSample; x++) {
for (int y = 0; y < nSample; y++) {
vec3d start = bl;
start += vec3d{ {{static_cast<float>(x) * size.xyz.x / static_cast<float>(n << (oversampling - 1)),
static_cast<float>(y) * size.xyz.y / static_cast<float>(n << (oversampling - 1)),
0.0f }} };
vec3d end = start;
end.xyz.z += size.xyz.z;
mc.p0 = &start;
mc.p1 = &end;
mc.hit_points_all.clear();
mc.hit_submodels_all.clear();
model_collide(&mc);
//Annoying hack cause sometimes, if edges of polygons get too close to the ray, the collisions are missed / too many. At least find odd rays and fix those, since these are very visible
while (mc.hit_points_all.size() % 2 != 0) {
start += vec3d{ {{ size.xyz.x / static_cast<float>(n << (oversampling - 1)) * (Random::INV_F_MAX_VALUE * Random::next() - 0.5f),
size.xyz.y / static_cast<float>(n << (oversampling - 1)) * (Random::INV_F_MAX_VALUE * Random::next() - 0.5f), 0.0f }} };
end += vec3d{ {{ size.xyz.x / static_cast<float>(n << (oversampling - 1)) * (Random::INV_F_MAX_VALUE * Random::next() - 0.5f),
size.xyz.y / static_cast<float>(n << (oversampling - 1)) * (Random::INV_F_MAX_VALUE * Random::next() - 0.5f), 0.0f }} };
mc.hit_points_all.clear();
mc.hit_submodels_all.clear();
model_collide(&mc);
}
SCP_multiset<int> collisionZIndices;
for(const vec3d& hitpnt : mc.hit_points_all)
collisionZIndices.emplace(static_cast<int>((hitpnt.xyz.z - bl.xyz.z) / size.xyz.z * static_cast<float>(n << (oversampling - 1))));
size_t hitcnt = 0;
auto hitpntit = collisionZIndices.cbegin();
for (int z = 0; z < nSample; z++) {
while (hitpntit != collisionZIndices.cend() && *hitpntit < z) {
++hitpntit;
++hitcnt;
}
volumeSampleCache[x * nSample * nSample + y * nSample + z] = hitcnt % 2 != 0;
}
}
}
model_unload(modelnum);
//Sample the nebula values from the binary cubegrid.
volumeBitmapData = make_unique<ubyte[]>(n * n * n * 4);
int oversamplingCount = (1 << (oversampling - 1)) + 1;
float oversamplingDivisor = 255.1f / static_cast<float>(oversamplingCount);
for (int x = 0; x < n; x++) {
for (int y = 0; y < n; y++) {
for (int z = 0; z < n; z++) {
int sum = 0;
for (int sx = x * oversampling; sx <= (x + 1) * oversampling; sx++) {
for (int sy = y * oversampling; sy <= (y + 1) * oversampling; sy++) {
for (int sz = z * oversampling; sz <= (z + 1) * oversampling; sz++) {
if (volumeSampleCache[sx * nSample * nSample + sy * nSample + sz])
sum++;
}
}
}
volumeBitmapData[COLOR_3D_ARRAY_POS(n, A, x, y, z)] = static_cast<ubyte>(static_cast<float>(sum) * oversamplingDivisor);
}
}
}
// Test for edges in the nebula to compute the UDF
auto volumeEdgeCache = make_unique<ivec3[]>(n * n * n);
SCP_set<ivec3> udfBFS_checking, udfBFS_to_check;
for (int x = 0; x < n; x++) {
for (int y = 0; y < n; y++) {
for (int z = 0; z < n; z++) {
const ubyte& nebula_density = volumeBitmapData[COLOR_3D_ARRAY_POS(n, A, x, y, z)];
//If we have neither full nor no nebula presence, it's an edge.
if (nebula_density > 0 && nebula_density < 255) {
udfBFS_to_check.emplace(ivec3{x, y, z});
volumeEdgeCache[x * n * n + y * n + z] = ivec3{x, y, z};
}
else {
bool found_edge = false;
//it's possible that we get completely sharp edges. So test for that.
for (const ivec3& neighbor : getNeighbors({x, y, z})){
if (neighbor.x < 0 || neighbor.x >= n || neighbor.y < 0 || neighbor.y >= n || neighbor.z < 0 || neighbor.z >= n)
continue;
if (nebula_density != volumeBitmapData[COLOR_3D_ARRAY_POS(n, A, neighbor.x, neighbor.y, neighbor.z)]){
found_edge = true;
break;
}
}
if (found_edge) {
udfBFS_to_check.emplace(ivec3{x, y, z});
volumeEdgeCache[x * n * n + y * n + z] = ivec3{x, y, z};
}
else
volumeEdgeCache[x * n * n + y * n + z] = ivec3{-1, -1, -1};
}
}
}
}
//BFS from the known nebula edges to find the distance to the closest edge
while(!udfBFS_to_check.empty()){
udfBFS_checking = udfBFS_to_check;
udfBFS_to_check.clear();
for (const ivec3& toCheck : udfBFS_checking){
const ivec3& closestEdgeTile = volumeEdgeCache[toCheck.x * n * n + toCheck.y * n + toCheck.z];
for (const ivec3& neighbor : getNeighbors(toCheck)) {
if (neighbor.x < 0 || neighbor.x >= n || neighbor.y < 0 || neighbor.y >= n || neighbor.z < 0 || neighbor.z >= n)
continue;
ivec3& neighborClosestEdgeTile = volumeEdgeCache[neighbor.x * n * n + neighbor.y * n + neighbor.z];
if (neighborClosestEdgeTile.x < 0 || getNebDistSquared(neighbor, closestEdgeTile, size, false) < getNebDistSquared(neighbor, neighborClosestEdgeTile, size, false)) {
neighborClosestEdgeTile = closestEdgeTile;
udfBFS_to_check.emplace(neighbor);
}
}
}
}
//Compute the actual UDF from the BFS
//scale is the maximal distance possible.
udfScale = vm_vec_mag(&size);
for (int x = 0; x < n; x++) {
for (int y = 0; y < n; y++) {
for (int z = 0; z < n; z++) {
float dist = sqrtf(getNebDistSquared(ivec3{x, y, z}, volumeEdgeCache[x * n * n + y * n + z], size, true)) / static_cast<float>(n); //in meters
volumeBitmapData[COLOR_3D_ARRAY_POS(n, R, x, y, z)] = static_cast<ubyte>(dist / udfScale * 255.0f); //UDF
volumeBitmapData[COLOR_3D_ARRAY_POS(n, G, x, y, z)] = 0; // Reserved
volumeBitmapData[COLOR_3D_ARRAY_POS(n, B, x, y, z)] = 0; // Reserved
}
}
}
volumeBitmapHandle = bm_create_3d(32, n, n, n, volumeBitmapData.get());
if (!noiseActive)
return;
int nNoise = 1 << noiseResolution;
noiseVolumeBitmapData = make_unique<ubyte[]>(nNoise * nNoise * nNoise * 4);
anl::CKernel kernel;
anl::CArray3Dd img(nNoise, nNoise, nNoise), img2(nNoise, nNoise, nNoise);
anl::SMappingRanges ranges(
0.0f, 1.0f,
0.0f, 1.0f,
0.0f, 1.0f);
anl::CInstructionIndex wispyNoise = noiseColorFunc1 ? getCustomNoise(kernel, *noiseColorFunc1) : getDefaultNoise(kernel, 0);
anl::CInstructionIndex wispyNoise2 = noiseColorFunc2 ? getCustomNoise(kernel, *noiseColorFunc2) : getDefaultNoise(kernel, 3);
anl::map3D(anl::SEAMLESS_XYZ, img, kernel, ranges, wispyNoise);
anl::map3D(anl::SEAMLESS_XYZ, img2, kernel, ranges, wispyNoise2);
for (int x = 0; x < nNoise; x++) {
for (int y = 0; y < nNoise; y++) {
for (int z = 0; z < nNoise; z++) {
const auto& noisePixel = img.get(x, y, z);
const auto& noisePixel2 = img2.get(x, y, z);
noiseVolumeBitmapData[COLOR_3D_ARRAY_POS(nNoise, R, x, y, z)] = static_cast<ubyte>(noisePixel * 255.0f); // R. Color noise 1, sampled at detail 1
noiseVolumeBitmapData[COLOR_3D_ARRAY_POS(nNoise, G, x, y, z)] = static_cast<ubyte>(noisePixel2 * 255.0f); // G. Color noise 2, sampled at detail 2
noiseVolumeBitmapData[COLOR_3D_ARRAY_POS(nNoise, B, x, y, z)] = 0; // B. Reserved for surface noise
noiseVolumeBitmapData[COLOR_3D_ARRAY_POS(nNoise, A, x, y, z)] = 0; // A. Reserved for surface noise.
}
}
}
noiseVolumeBitmapHandle = bm_create_3d(32, nNoise, nNoise, nNoise, noiseVolumeBitmapData.get());
}
int volumetric_nebula::getVolumeBitmapHandle() const {
Assertion(volumeBitmapHandle >= 0, "Tried to access volume bitmap without creating it!");
return volumeBitmapHandle;
}
int volumetric_nebula::getNoiseVolumeBitmapHandle() const {
Assertion(noiseVolumeBitmapHandle >= 0, "Tried to access noise volume bitmap without creating it!");
return noiseVolumeBitmapHandle;
}
float volumetric_nebula::getUDFScale() const {
return udfScale;
}
float volumetric_nebula::getAlphaToPos(const vec3d& pnt, float distance_mult) const {
// This pretty much emulates the volumetric shader. This could be slow, so I hope it's not needed too often
vec3d ray_direction;
float maxTmin = 0;
float minTmax = vm_vec_normalized_dir(&ray_direction, &pnt, &Eye_position);
vec3d t1 = (bb_min - Eye_position) / ray_direction;
vec3d t2 = (bb_max - Eye_position) / ray_direction;
for (size_t i = 0; i < 3; i++) {
std::pair<const float&, const float&> tmin_tmax = t1.a1d[i] < t2.a1d[i] ?
std::pair<const float&, const float&>{t1.a1d[i], t2.a1d[i]} :
std::pair<const float&, const float&>{t2.a1d[i], t1.a1d[i]};
maxTmin = MAX(maxTmin, tmin_tmax.first);
minTmax = MIN(minTmax, tmin_tmax.second);
}
float alpha = 1.0f;
const float stepalpha = -(powf(getAlphaLim(), 1.0f / (getOpacityDistance() / getStepsize())) - 1.0f);
const int n = 1 << resolution;
for (float stept = maxTmin; stept < minTmax; stept += getStepsize()) {
vec3d localpos = (Eye_position + (ray_direction * stept) - bb_min) / size * static_cast<float>(n);
int x = static_cast<int>(localpos.xyz.x);
int y = static_cast<int>(localpos.xyz.y);
int z = static_cast<int>(localpos.xyz.z);
CLAMP(x, 0, n - 1);
CLAMP(y, 0, n - 1);
CLAMP(z, 0, n - 1);
alpha *= 1.0f - (stepalpha * (static_cast<float>(volumeBitmapData[COLOR_3D_ARRAY_POS(n, A, x, y, z)]) / 255.0f) / distance_mult);
if (alpha <= alphaLim)
break;
}
CLAMP(alpha, 0.0f, 1.0f);
return alpha;
}
void volumetric_nebula::set_enabled(bool set_enabled){
enabled = set_enabled;
}
bool volumetric_nebula::get_enabled() const {
return enabled;
};
void volumetrics_level_close() {
if (The_mission.volumetrics)
The_mission.volumetrics.reset();
}
|