1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
#include "network/multi_interpolate.h"
#include "freespace.h"
SCP_unordered_map<int, interpolation_manager> Interp_info;
extern void multi_ship_record_signal_update(int objnum, TIMESTAMP lower_time_limit, TIMESTAMP upper_time_limit, int prev_packet_index, int current_packet_index);
///////////////////////////////////////////
// interpolation info management functions
// seeks through the packets to find the one that we need, starting from the end, notice we cannot use MULTIPLAYER_CLIENT macro here. We cannot include multi.h
void interpolation_manager::reassess_packet_index(vec3d* pos, matrix* ori, physics_info* pip)
{
auto current_time = Multi_Timing_Info.get_current_time();
int current_index = static_cast<int>(_packets.size()) - 2;
int prev_index = static_cast<int>(_packets.size()) - 1;
// iterate through the packets
for (; current_index > -1; current_index--, prev_index--) {
// did we find where we should interpolate?
if ((_packets[current_index].remote_missiontime >= current_time) && (_packets[prev_index].remote_missiontime <= current_time)) {
_upcoming_packet_index = current_index;
_prev_packet_index = prev_index;
// probably the "hackiest" thing about this. If we were just straight simulating,
// and we now need to go back, pretend that the position we were in *was* our old packet
// and we are now going towards our new packet's physics.
if (_simulation_mode) {
replace_packet(prev_index, pos, ori, pip); // TODO, if simulation mode was forced by the collision code, this method regresses a bug where collisions instantly kill
_simulation_mode = false;
}
return;
}
}
// if we didn't find indexes then we are overwhelmingly likely to have passed the server somehow
// and we need to make sure that we just straight simulate these ships
_simulation_mode = true;
}
void interpolate_main_helper(int objnum, vec3d* pos, matrix* ori, physics_info* pip, vec3d* last_pos, matrix* last_orient, vec3d* gravity, bool player_ship)
{
Interp_info[objnum].interpolate_main(pos, ori, pip, last_pos, last_orient, gravity, player_ship);
}
// the meat and potatoes. Basically, this figures out if we should interpolate, and then interpolates or sims
void interpolation_manager::interpolate_main(vec3d* pos, matrix* ori, physics_info* pip, vec3d* last_pos, matrix* last_orient, vec3d * gravity, bool player_ship)
{
// make sure its a valid ship and valid mode
Assert(Game_mode & GM_MULTIPLAYER);
// if we have not received enough packets, simulate then return,
// To optimize, we should not reassess_packet_index with a negative index.
// The index will be made positive by add_packet, once a second packet has been received.
if (_upcoming_packet_index < 0 ) {
*last_pos = *pos;
*last_orient = *ori;
physics_sim(pos, ori, pip, gravity, flFrametime);
// duplicate the rest of the physics engine's calls here to make the simulation more exact.
pip->speed = vm_vec_mag(&pip->vel);
pip->fspeed = vm_vec_dot(&ori->vec.fvec, &pip->vel);
return;
}
reassess_packet_index(pos, ori, pip);
// if we are off the beaten path
if(_simulation_mode) {
float sim_time = flFrametime;
// we need to push this ship up to the limit of where we were on the remote instance, if we haven't already.
// then we need to adjust our timing since some of the sim time is used up getting to that last packet.
if (!_packets_expended && !_packets.empty()) {
physics_apply_snapshot_manual(*pos, *ori, pip->vel, pip->desired_vel, pip->rotvel, pip->desired_rotvel, _packets.front().snapshot);
sim_time -= (static_cast<float>(_packets.front().remote_missiontime) - static_cast<float>(Multi_Timing_Info.get_last_time())) / TIMESTAMP_FREQUENCY;
_packets_expended = true;
}
sim_time = (sim_time > 0.25f) ? 0.25f : sim_time;
physics_sim(pos, ori, pip, gravity, sim_time);
// we can't trust what the last position was on the local instance, so figure out what it should have been
// use flFrametime here because we need to know what the last position would have been if it was accurate in the last frame.
vm_vec_scale_add(last_pos, pos, &pip->vel, -flFrametime);
// Asteroth's method for last orient.
if (!IS_VEC_NULL(&pip->rotvel)) {
vec3d normalized_rotvel;
float mag = vm_vec_copy_normalize(&normalized_rotvel, &pip->rotvel);
matrix rotate_to_previous;
vm_quaternion_rotate(&rotate_to_previous, -mag * flFrametime, &normalized_rotvel);
vm_matrix_x_matrix(last_orient, &rotate_to_previous, ori);
} else {
*last_orient = *ori;
}
// duplicate the rest of the physics engine's calls here to make the simulation more exact.
pip->speed = vm_vec_mag(&pip->vel);
pip->fspeed = vm_vec_dot(&ori->vec.fvec, &pip->vel);
return; // we should not try interpolating and siming on the same call, so return.
}
// calc what the current timing should be.
float numerator = static_cast<float>(_packets[_upcoming_packet_index].remote_missiontime) - static_cast<float>(Multi_Timing_Info.get_current_time());
float denominator = static_cast<float>(_packets[_upcoming_packet_index].remote_missiontime) - static_cast<float>(_packets[_prev_packet_index].remote_missiontime);
// work around for weird situations that might cause NAN (you just never know with multi)
denominator = (denominator > 0.05f) ? denominator : 0.05f;
float scale = numerator / denominator;
// protect against bad floating point arithmetic making orientation or position look off
CLAMP(scale, 0.001f, 0.999f);
// one by one interpolate the vectors to get the desired results.
physics_snapshot temp_state;
// Interpolation in just two lines! Who'da thunk?
physics_interpolate_snapshots(temp_state, _packets[_prev_packet_index].snapshot, _packets[_upcoming_packet_index].snapshot, scale);
physics_apply_snapshot_manual(*pos, *ori, pip->vel, pip->desired_vel, pip->rotvel, pip->desired_rotvel, temp_state);
// we can't trust what the last position was on the local instance, so figure out what it should have been
// use flFrametime here because we need to know what the last position would have been if it was accurate in the last frame.
vm_vec_scale_add(last_pos, pos, &pip->vel, -flFrametime);
// AI ships do not really use desired velocity, so undo that calc for AI ships.
if (!player_ship) {
pip->desired_rotvel = pip->rotvel;
}
// finally, a quick calculation for the last orientation, courtesy Asteroth
if (!IS_VEC_NULL(&pip->rotvel)) {
vec3d normalized_rotvel;
float mag = vm_vec_copy_normalize(&normalized_rotvel, &pip->rotvel);
matrix rotate_to_previous;
vm_quaternion_rotate(&rotate_to_previous, -mag * flFrametime, &normalized_rotvel);
vm_matrix_x_matrix(last_orient, &rotate_to_previous, ori);
} else {
*last_orient = *ori;
}
// duplicate the rest of the physics engine's calls here to make the simulation more exact.
pip->speed = vm_vec_mag(&pip->vel);
pip->fspeed = vm_vec_dot(&ori->vec.fvec, &pip->vel);
}
// correct the ship record for player ships when an up to date packet comes in.
void interpolation_manager::reinterpolate_previous(TIMESTAMP stamp, int prev_packet_index, int next_packet_index, vec3d& position, matrix& orientation, vec3d& velocity, vec3d& rotational_velocity)
{
// calc what the timing was previously.
float numerator = static_cast<float>(_packets[next_packet_index].remote_missiontime) - static_cast<float>(stamp.value());
float denominator = static_cast<float>(_packets[next_packet_index].remote_missiontime) - static_cast<float>(_packets[prev_packet_index].remote_missiontime);
denominator = (denominator > 0.05f) ? denominator : 0.05f;
float scale = numerator / denominator;
// protect against bad floating point arithmetic making orientation or position look off
CLAMP(scale, 0.001f, 0.999f);
physics_snapshot temp_snapshot;
physics_interpolate_snapshots(temp_snapshot, _packets[_prev_packet_index].snapshot, _packets[_upcoming_packet_index].snapshot, scale);
physics_apply_snapshot_manual(position, orientation, velocity, rotational_velocity, temp_snapshot);
}
// add a packet to the vector, remove the last one if necessary.
void interpolation_manager::add_packet(int objnum, int frame, int packet_timestamp, vec3d* position, vec3d* velocity, vec3d* rotational_velocity, vec3d* desired_velocity, vec3d* desired_rotational_velocity, angles* angles, int player_index)
{
if (_packets.empty()) {
_packets.push_back(packet_info(frame, packet_timestamp, position, velocity, rotational_velocity, desired_velocity, desired_rotational_velocity, angles));
_source_player_index = player_index;
return;
}
// go through each packet and compare frames. If the frame is equal, dump it.
for (auto packet = _packets.begin(); packet != _packets.end(); packet++) {
// this packet was already received somehow, no need to record anything.
if (frame == packet->frame){
return;
}
// once we find the right place for this packet, insert and then bail, all other cases are meaningless
if (frame > packet->frame) {
// if this is now the most recent packet, then make sure the next round of interpolation uses its position, even if the packet came in too late.
if (packet == _packets.begin()) {
_packets_expended = false;
}
// yes, insert is somewhat inefficient here, but it *greatly* simplifies the code
_packets.insert(packet, packet_info(frame, packet_timestamp, position, velocity, rotational_velocity, desired_velocity, desired_rotational_velocity, angles));
// when the size of vector is 2, then we have just received enough pakets to begin interpolating,
// and we need to mark this object as ready to interpolate
if (_packets.size() == 2) {
_upcoming_packet_index = 0;
_prev_packet_index = 1;
}
if (static_cast<int>(_packets.size()) > PACKET_INFO_LIMIT) {
_packets.pop_back();
}
// whenenver the server gets a player packet, we need to update the ship record, since the old info is now stale
if (Objects[objnum].flags[Object::Object_Flags::Player_ship]){
int start_time = Multi_Timing_Info.get_mission_start_time();
multi_ship_record_signal_update(objnum, TIMESTAMP(start_time + _packets[_prev_packet_index].remote_missiontime), TIMESTAMP(start_time + _packets[_upcoming_packet_index].remote_missiontime), _prev_packet_index, _upcoming_packet_index);
// if it's not the front packet, we need to update more info past the current packet, as well.
// Should be rare though as it is a contingency for out of order packets.
if (_upcoming_packet_index != 0){
multi_ship_record_signal_update(objnum, TIMESTAMP(start_time + _packets[_upcoming_packet_index].remote_missiontime), TIMESTAMP(start_time + _packets[_upcoming_packet_index - 1].remote_missiontime), _upcoming_packet_index, _upcoming_packet_index - 1);
}
}
return;
}
}
}
// basically, copy the state from the object that had been simulated up to that point and treat it as the "old packet".
// should never replace index 0
void interpolation_manager::replace_packet(int index, vec3d* pos, matrix* orient, physics_info* pip)
{
// the hackiest part of the hack? Setting its frame. Let FSO think that it was basically brand new.
// it needs to handle it this way because otherwise another packet might get placed in front of it,
// and we lose our intended effect of interpolating the simulation error away.
_packets[index].frame = _packets[index - 1].frame - 1;
_packets[index].remote_missiontime = Multi_Timing_Info.get_last_time();
physics_populate_snapshot_manual(_packets[index].snapshot, *pos, *orient, pip->vel, pip->desired_vel, pip->rotvel, pip->desired_rotvel);
}
// the contained vectors have been cleared during object shut down.
void multi_interpolate_clear_all()
{
// clear the main container.
Interp_info.clear();
}
// helper functiont that helps avoid include issues.
void multi_interpolate_clear_helper(int objnum) {
Interp_info[objnum].clean_up();
}
|