1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
#pragma once
#include "globalincs/pstypes.h"
#include "parse/parselo.h"
#include "math/curve.h"
#include <mpark/variant.hpp>
#include <random>
#include <type_traits>
#include <limits>
namespace util {
/**
* @defgroup randomUtils Random Utilities
*
* Utility functions for handling random values
*/
namespace {
/**
* @brief Parses a generic list of numbers
* @param list The array where the numbers should be stored.
* @return The amount of parsed numbers
*
* @ingroup randomUtils
*/
template <typename T, size_t N>
size_t parse_number_list(T (&list)[N])
{
ignore_white_space();
if (*Mp != '(') {
// Probably one a single value so stuff that and don't parse a list. This makes it easier to specify single
// values
float val;
stuff_float(&val);
list[0] = static_cast<T>(val);
return 1;
}
float helpList[N];
auto num = stuff_float_list(helpList, N);
for (size_t i = 0; i < num; ++i) {
list[i] = static_cast<T>(helpList[i]);
}
return num;
}
} // namespace
/**
* @brief Generic class for generating numbers in a specific range
*
* This allows to use a generic value, distribution and generator type. It's valid to only use one value for the range
* in which case the returned value is constant.
*
* @ingroup randomUtils
*/
template <typename Value, typename Distribution, typename Generator>
class RandomRange {
public:
typedef Distribution DistributionType;
typedef Generator GeneratorType;
typedef Value ValueType;
private:
mutable GeneratorType m_generator;
mutable DistributionType m_distribution;
bool m_constant;
ValueType m_minValue;
ValueType m_maxValue;
public:
template <typename T, typename... Ts, typename = typename std::enable_if<sizeof... (Ts) >=1 || !std::is_same<ValueType, typename std::remove_reference<typename std::remove_cv<T>::type>::type>::value, int>::type>
RandomRange(T&& distributionFirstParameter, Ts&&... distributionParameters)
: m_generator(std::random_device()()), m_distribution(distributionFirstParameter, distributionParameters...)
{
m_minValue = static_cast<ValueType>(m_distribution.min());
m_maxValue = static_cast<ValueType>(m_distribution.max());
m_constant = false;
}
explicit RandomRange(const ValueType& val) : RandomRange()
{
m_minValue = val;
m_maxValue = val;
m_constant = true;
}
RandomRange() : m_generator(std::random_device()()), m_distribution()
{
m_minValue = static_cast<ValueType>(0.0);
m_maxValue = static_cast<ValueType>(0.0);
m_constant = true;
}
/**
* @brief Determines the next random number of this range
* @return The random number
*/
ValueType next() const
{
if (m_constant) {
return m_minValue;
}
return m_distribution(m_generator);
}
/**
* @brief Gets the minimum value that may be returned by this random range
*
* @return The minimum value
*/
ValueType min() const
{
return m_minValue;
}
/**
* @brief Gets the maximum value that may be returned by this random range
*
* @return The maximum value
*/
ValueType max() const
{
return m_maxValue;
}
};
/**
* @brief A random range with a normal distribution
*
* The range parameters are passed directly to std::normal_distribution
*
* @ingroup randomUtils
*/
template <typename Value>
using NormalRange = RandomRange<Value, std::normal_distribution<Value>, std::minstd_rand>;
/**
* @brief A normal range which uses floats
*
* @ingroup randomUtils
*/
typedef NormalRange<float> NormalFloatRange;
class BoundedNormalDistribution {
public:
using result_type = float;
using param_type = struct {
std::normal_distribution<float>::param_type normal_parameters;
float min;
float max;
};
param_type m_param;
inline BoundedNormalDistribution() : BoundedNormalDistribution(param_type{std::normal_distribution<float>::param_type{0.5f, 1.f}, 0.f, 1.f}) {}
inline BoundedNormalDistribution(param_type curve) : m_param(curve) {}
inline void reset() {}
inline param_type param() const
{
return m_param;
}
inline void param(param_type p)
{
m_param = p;
}
template <typename Generator>
inline result_type operator()(Generator& generator, const param_type& param)
{
float unbounded = std::normal_distribution<float>()(generator, param.normal_parameters);
CLAMP(unbounded, param.min, param.max);
return unbounded;
}
template <typename Generator>
inline result_type operator()(Generator& generator)
{
return this->operator()(generator, m_param);
}
inline result_type min() const
{
return m_param.min;
}
inline result_type max() const
{
return m_param.max;
}
inline bool operator==(const BoundedNormalDistribution& other) const
{
return (m_param.normal_parameters == other.m_param.normal_parameters && fl_equal(m_param.min, other.m_param.min) &&
fl_equal(m_param.max, other.m_param.max));
}
inline bool operator!=(const BoundedNormalDistribution& other) const
{
return !(*this == other);
}
};
using BoundedNormalFloatRange = RandomRange<float, BoundedNormalDistribution, std::minstd_rand>;
/**
* @brief A function for parsing a normal range
* @return The parsed normal range
*
* @ingroup randomUtils
*/
inline BoundedNormalFloatRange parseNormalFloatRange(float min = std::numeric_limits<float>::lowest()/2.1f, float max = std::numeric_limits<float>::max()/2.1f)
{
float valueList[2];
auto num = parse_number_list(valueList);
float parsed_min = min;
float parsed_max = max;
if (num == 0) {
error_display(0, "Need at least one value to form a random range!");
return {};
} else if (num == 1) {
return BoundedNormalFloatRange(BoundedNormalDistribution::param_type{std::normal_distribution<float>::param_type(valueList[0]), parsed_min, parsed_max});
}
stuff_float_optional(&parsed_min);
stuff_float_optional(&parsed_max);
if (parsed_min > parsed_max) {
error_display(0, "Minimum value %f is more than maximum value %f!", (float)parsed_min, (float)parsed_max);
std::swap(parsed_min, parsed_max);
}
if (parsed_min < min) {
error_display(0, "First value (%f) is less than the minimum %f!", (float)parsed_min, (float)min);
parsed_min = min;
}
if (parsed_min > max) {
error_display(0, "First value (%f) is greater than the maximum %f!", (float)parsed_min, (float)max);
parsed_min = max;
}
if (parsed_max < min) {
error_display(0, "Second value (%f) is less than the minimum %f!", (float)parsed_max, (float)min);
parsed_max = min;
}
if (parsed_max > max) {
error_display(0, "Second value (%f) is greater than the maximum %f!", (float)parsed_max, (float)max);
parsed_max = max;
}
return BoundedNormalFloatRange(BoundedNormalDistribution::param_type{std::normal_distribution<float>::param_type(valueList[0], valueList[1]), parsed_min, parsed_max});
}
/**
* @brief A generic random range which uses a uniform distribution
*
* @ingroup randomUtils
*/
template <typename Value>
using UniformRange = RandomRange<Value,
typename std::conditional<std::is_integral<Value>::value,
std::uniform_int_distribution<Value>,
std::uniform_real_distribution<Value>>::type,
std::minstd_rand>;
/**
* @brief A uniform range which uses floats
*
* @ingroup randomUtils
*/
typedef UniformRange<float> UniformFloatRange;
/**
* @brief A uniform range which uses ints
*
* @ingroup randomUtils
*/
typedef UniformRange<int> UniformIntRange;
/**
* @brief A uniform range which uses uints
*
* @ingroup randomUtils
*/
typedef UniformRange<uint> UniformUIntRange;
/**
* @brief Parses a generic uniform range
* @param allowNegativ If @c true, negative values will be allowed
* @param min The minimum value the random range may return
* @param max The maximum value the random range may return
*
* @return The parsed uniform range
*
* @ingroup randomUtils
*/
template <typename Value>
UniformRange<Value> parseUniformRange(Value min = std::numeric_limits<float>::lowest()/2.1f,
Value max = std::numeric_limits<float>::max()/2.1f)
{
Assertion(min <= max, "Invalid min-max values specified!");
Value valueList[2];
auto num = parse_number_list(valueList);
if (num == 0) {
error_display(0, "Need at least one value to form a random range!");
return UniformRange<Value>();
} else if (num == 1) {
return UniformRange<Value>(valueList[0]);
}
if (valueList[0] > valueList[1]) {
error_display(0, "Minimum value %f is more than maximum value %f!", (float)valueList[0], (float)valueList[1]);
std::swap(valueList[0], valueList[1]);
}
if (valueList[0] < min) {
error_display(0, "First value (%f) is less than the minimum %f!", (float)valueList[0], (float)min);
valueList[0] = min;
}
if (valueList[0] > max) {
error_display(0, "First value (%f) is greater than the maximum %f!", (float)valueList[0], (float)max);
valueList[0] = max;
}
if (valueList[1] < min) {
error_display(0, "Second value (%f) is less than the minimum %f!", (float)valueList[1], (float)min);
valueList[1] = min;
}
if (valueList[1] > max) {
error_display(0, "Second value (%f) is greater than the maximum %f!", (float)valueList[1], (float)max);
valueList[1] = max;
}
if (valueList[0] == valueList[1]) {
// If the two values are equal then this is slightly more efficient
return UniformRange<Value>(valueList[0]);
} else {
return UniformRange<Value>(valueList[0], valueList[1]);
}
}
class CurveNumberDistribution {
public:
using result_type = float;
using param_type = struct {
int curve;
float min;
float max;
};
param_type m_param;
inline CurveNumberDistribution() : CurveNumberDistribution(param_type{-1, NAN, NAN}) {}
inline CurveNumberDistribution(param_type curve) : m_param(curve) {}
inline void reset() {}
inline param_type param() const
{
return m_param;
}
inline void param(param_type p)
{
m_param = p;
}
template <typename Generator>
inline result_type operator()(Generator& generator, const param_type& param)
{
if (param.curve < 0) {
return 0.f;
}
float lower_bound = Curves[param.curve].keyframes.front().pos.x;
float upper_bound = Curves[param.curve].keyframes.back().pos.x;
float max_integral = Curves[param.curve].GetValueIntegrated(Curves[param.curve].keyframes.back().pos.x);
float rand =
std::generate_canonical<float, std::numeric_limits<float>::digits, Generator>(generator) * max_integral;
float curve_min = lower_bound;
float curve_max = upper_bound;
for (size_t count = 0; count < 16; count++) {
float current_pos = (lower_bound + upper_bound) / 2.f;
float current_value = Curves[param.curve].GetValueIntegrated(current_pos);
if (fl_equal(current_value, rand, max_integral * 0.01f)) {
// remap the values to the distribution's range
return (current_pos - curve_min) / (curve_max - curve_min) * (param.max - param.min) + param.min;
}
if (current_value > rand) {
upper_bound = current_pos;
} else {
lower_bound = current_pos;
}
}
// remap the values to the distribution's range
return (((lower_bound + upper_bound) / 2.f) - curve_min) / (curve_max - curve_min) * (param.max - param.min) +
param.min;
}
template <typename Generator>
inline result_type operator()(Generator& generator)
{
return this->operator()(generator, m_param);
}
inline result_type min() const
{
return Curves[m_param.curve].keyframes.front().pos.x;
}
inline result_type max() const
{
return Curves[m_param.curve].keyframes.back().pos.x;
}
inline bool operator==(const CurveNumberDistribution& other) const
{
return (m_param.curve == other.m_param.curve && fl_equal(m_param.min, other.m_param.min) && fl_equal(m_param.max, other.m_param.max));
}
inline bool operator!=(const CurveNumberDistribution& other) const
{
return !(*this == other);
}
};
using CurveFloatRange = RandomRange<float, CurveNumberDistribution, std::minstd_rand>;
inline CurveFloatRange parseCurveFloatRange(float min = std::numeric_limits<float>::lowest()/2.1f, float max = std::numeric_limits<float>::max()/2.1f) {
CurveNumberDistribution::param_type curve_params;
SCP_string curve_name;
stuff_string(curve_name, F_NAME);
curve_params.curve = curve_get_by_name(curve_name);
optional_string("(");
stuff_float_optional(&curve_params.min);
stuff_float_optional(&curve_params.max);
optional_string(")");
if (curve_params.curve < 0) {
error_display(0, "Curve %s not found! Random distributions using this curve will return 0.", curve_name.c_str());
return {curve_params};
} else {
bool y_below_0 = false;
bool no_y_above_0 = true;
for (const auto& kframe : Curves[curve_params.curve].keyframes) {
if (kframe.pos.y < 0.f) {
y_below_0 = true;
}
if (kframe.pos.y > 0.f) {
no_y_above_0 = false;
}
}
if (y_below_0) {
error_display(0,
"Curve %s goes below zero along the Y axis. Random distributions using this curve will return 0.", curve_name.c_str());
curve_params.curve = -1;
return {curve_params};
}
if (no_y_above_0) {
error_display(0,
"Curve %s has no values above zero along the Y axis. Random distributions using this curve will return 0.", curve_name.c_str());
curve_params.curve = -1;
return {curve_params};
}
}
if (fl_is_nan(curve_params.min) || fl_is_nan(curve_params.max)) {
if (!fl_is_nan(curve_params.min)) {
error_display(0, "Minimum value but no maximum value specified for curve distribution %s!", curve_name.c_str());
}
curve_params.min = Curves[curve_params.curve].keyframes.front().pos.x;
curve_params.max = Curves[curve_params.curve].keyframes.back().pos.x;
}
if (curve_params.min > curve_params.max) {
error_display(0, "Minimum value %f is more than maximum value %f!", (float)curve_params.min, (float)curve_params.max);
std::swap(curve_params.min, curve_params.max);
}
if (curve_params.min < min) {
error_display(0, "First value (%f) is less than the minimum %f!", (float)curve_params.min, (float)min);
curve_params.min = min;
}
if (curve_params.min > max) {
error_display(0, "First value (%f) is greater than the maximum %f!", (float)curve_params.min, (float)max);
curve_params.min = max;
}
if (curve_params.max < min) {
error_display(0, "Second value (%f) is less than the minimum %f!", (float)curve_params.max, (float)min);
curve_params.max = min;
}
if (curve_params.max > max) {
error_display(0, "Second value (%f) is greater than the maximum %f!", (float)curve_params.max, (float)max);
curve_params.max = max;
}
return {curve_params};
}
template<typename result_type>
class ParsedRandomRange {
public:
using variant = mpark::variant<UniformFloatRange, BoundedNormalFloatRange, CurveFloatRange>;
private:
variant m_random_range;
// these could have been one-line auto lambdas if we had C++ 14
struct next_helper {
template <typename T>
inline float operator()(T& range) {
return range.next();
}
};
struct min_helper {
template<typename T>
inline float operator()(T& range) {
return range.min();
}
};
struct max_helper {
template <typename T>
inline float operator()(T& range) {
return range.max();
}
};
public:
template<typename T>
ParsedRandomRange(T&& random_range)
{
m_random_range = std::forward<T>(random_range);
}
ParsedRandomRange() {
m_random_range = UniformFloatRange();
};
inline result_type next() const {
return static_cast<result_type>(mpark::visit(next_helper{}, m_random_range));
}
inline result_type min() const {
return static_cast<result_type>(mpark::visit(min_helper{}, m_random_range));
}
inline result_type max() const {
return static_cast<result_type>(mpark::visit(max_helper{}, m_random_range));
}
static ParsedRandomRange parseRandomRange(float min = std::numeric_limits<float>::lowest()/2.1f, float max = std::numeric_limits<float>::max()/2.1f) {
switch (optional_string_either("NORMAL", "CURVE")) {
case 0: {
return ParsedRandomRange(parseNormalFloatRange(min, max));
}
case 1: {
return ParsedRandomRange(parseCurveFloatRange(min, max));
}
default: {
return ParsedRandomRange(parseUniformRange<float>(min, max));
}
}
}
template<typename T>
ParsedRandomRange& operator=(T&& random_range) {
m_random_range = std::forward<T>(random_range);
return *this;
}
};
using ParsedRandomFloatRange = ParsedRandomRange<float>;
using ParsedRandomUintRange = ParsedRandomRange<uint>;
}
|