1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
|
/*
* Copyright (C) Volition, Inc. 1999. All rights reserved.
*
* All source code herein is the property of Volition, Inc. You may not sell
* or otherwise commercially exploit the source or things you created based on the
* source.
*
*/
#include <cstdio>
#include <numeric>
#if _M_IX86_FP >= 1
#include <xmmintrin.h>
#endif
#include "math/vecmat.h"
#include "utils/RandomRange.h"
#define SMALL_NUM 1e-7
#define SMALLER_NUM 1e-20
#define CONVERT_RADIANS 0.017453 // conversion factor from degrees to radians
vec3d vmd_zero_vector = ZERO_VECTOR;
vec3d vmd_scale_identity_vector = SCALE_IDENTITY_VECTOR;
vec3d vmd_x_vector = { { { 1.0f, 0.0f, 0.0f } } };
vec3d vmd_y_vector = { { { 0.0f, 1.0f, 0.0f } } };
vec3d vmd_z_vector = { { { 0.0f, 0.0f, 1.0f } } };
matrix vmd_zero_matrix = ZERO_MATRIX;
matrix4 vmd_zero_matrix4 = ZERO_MATRIX4;
matrix vmd_identity_matrix = IDENTITY_MATRIX;
angles vmd_zero_angles = { 0.0f, 0.0f, 0.0f };
#define UNINITIALIZED_VALUE -12345678.9f
bool vm_vec_equal(const vec4 &self, const vec4 &other)
{
return fl_equal(self.a1d[0], other.a1d[0]) && fl_equal(self.a1d[1], other.a1d[1]) && fl_equal(self.a1d[2], other.a1d[2]) && fl_equal(self.a1d[3], other.a1d[3]);
}
bool vm_vec_equal(const vec3d &self, const vec3d &other)
{
return fl_equal(self.a1d[0], other.a1d[0]) && fl_equal(self.a1d[1], other.a1d[1]) && fl_equal(self.a1d[2], other.a1d[2]);
}
bool vm_vec_equal(const vec2d &self, const vec2d &other)
{
return fl_equal(self.x, other.x) && fl_equal(self.y, other.y);
}
bool vm_matrix_equal(const matrix &self, const matrix &other)
{
return vm_vec_equal(self.vec.fvec, other.vec.fvec) && vm_vec_equal(self.vec.uvec, other.vec.uvec) && vm_vec_equal(self.vec.rvec, other.vec.rvec);
}
bool vm_matrix_equal(const matrix4 &self, const matrix4 &other)
{
return vm_vec_equal(self.vec.fvec, other.vec.fvec) &&
vm_vec_equal(self.vec.rvec, other.vec.rvec) &&
vm_vec_equal(self.vec.uvec, other.vec.uvec) &&
vm_vec_equal(self.vec.pos, other.vec.pos);
}
// ---------------------------------------------------------------------
// vm_vec_component()
//
// finds projection of a vector along a unit (normalized) vector
//
float vm_vec_projection_parallel(vec3d *component, const vec3d *src, const vec3d *unit_vec)
{
float mag;
Assertion(vm_vec_is_normalized(unit_vec), "unit_vec must be normalized!");
mag = vm_vec_dot(src, unit_vec);
vm_vec_copy_scale(component, unit_vec, mag);
return mag;
}
// ---------------------------------------------------------------------
// vm_vec_projection_onto_plane()
//
// finds projection of a vector onto a plane specified by a unit normal vector
//
void vm_vec_projection_onto_plane(vec3d *projection, const vec3d *src, const vec3d *unit_normal)
{
float mag;
Assertion(vm_vec_is_normalized(unit_normal), "unit_normal must be normalized!");
mag = vm_vec_dot(src, unit_normal);
*projection = *src;
vm_vec_scale_add2(projection, unit_normal, -mag);
}
// ---------------------------------------------------------------------
// vm_vec_project_point_onto_plane()
//
// finds the point on a plane closest to a given point
// moves the point in the direction of the plane normal until it is on the plane
//
void vm_project_point_onto_plane(vec3d *new_point, const vec3d *point, const vec3d *plane_normal, const vec3d *plane_point)
{
float D; // plane constant in Ax+By+Cz+D = 0 or dot(X,n) - dot(Xp,n) = 0, so D = -dot(Xp,n)
float dist;
Assertion(vm_vec_is_normalized(plane_normal), "plane_normal must be normalized!");
D = -vm_vec_dot(plane_point, plane_normal);
dist = vm_vec_dot(point, plane_normal) + D;
*new_point = *point;
vm_vec_scale_add2(new_point, plane_normal, -dist);
}
// Take abs(x), then sqrt. Could insert warning message if desired.
float asqrt(float x)
{
if (x < 0.0f)
return fl_sqrt(-x);
else
return fl_sqrt(x);
}
void vm_set_identity(matrix *m)
{
m->vec.rvec.xyz.x = 1.0f; m->vec.rvec.xyz.y = 0.0f; m->vec.rvec.xyz.z = 0.0f;
m->vec.uvec.xyz.x = 0.0f; m->vec.uvec.xyz.y = 1.0f; m->vec.uvec.xyz.z = 0.0f;
m->vec.fvec.xyz.x = 0.0f; m->vec.fvec.xyz.y = 0.0f; m->vec.fvec.xyz.z = 1.0f;
}
angles vm_angles_new(float p, float b, float h)
{
angles ang;
ang.p = p;
ang.b = b;
ang.h = h;
return ang;
}
vec3d vm_vec_new(float x, float y, float z)
{
vec3d vec;
vec.xyz.x = x;
vec.xyz.y = y;
vec.xyz.z = z;
return vec;
}
vec4 vm_vec4_new(float x, float y, float z, float w)
{
vec4 vec;
vec.xyzw.x = x;
vec.xyzw.y = y;
vec.xyzw.z = z;
vec.xyzw.w = w;
return vec;
}
matrix vm_matrix_new(float a0, float a1, float a2, float a3, float a4, float a5, float a6, float a7, float a8)
{
matrix m;
m.a1d[0] = a0;
m.a1d[1] = a1;
m.a1d[2] = a2;
m.a1d[3] = a3;
m.a1d[4] = a4;
m.a1d[5] = a5;
m.a1d[6] = a6;
m.a1d[7] = a7;
m.a1d[8] = a8;
return m;
}
matrix vm_matrix_new(vec3d rvec, vec3d uvec, vec3d fvec)
{
matrix m;
m.vec.rvec = rvec;
m.vec.uvec = uvec;
m.vec.fvec = fvec;
return m;
}
//adds two vectors, fills in dest, returns ptr to dest
//ok for dest to equal either source, but should use vm_vec_add2() if so
//dest = src0 + src1
void vm_vec_add(vec3d *dest, const vec3d *src0, const vec3d *src1)
{
dest->xyz.x = src0->xyz.x + src1->xyz.x;
dest->xyz.y = src0->xyz.y + src1->xyz.y;
dest->xyz.z = src0->xyz.z + src1->xyz.z;
}
//Component-wise multiplication of two vectors
void vm_vec_cmult(vec3d* dest, const vec3d* src0, const vec3d* src1) {
dest->xyz.x = src0->xyz.x * src1->xyz.x;
dest->xyz.y = src0->xyz.y * src1->xyz.y;
dest->xyz.z = src0->xyz.z * src1->xyz.z;
}
void vm_vec_cmult2(vec3d* dest, const vec3d* src) {
dest->xyz.x *= src->xyz.x;
dest->xyz.y *= src->xyz.y;
dest->xyz.z *= src->xyz.z;
}
//Component-wise division of two vectors
void vm_vec_cdiv(vec3d* dest, const vec3d* src0, const vec3d* src1) {
dest->xyz.x = src0->xyz.x / src1->xyz.x;
dest->xyz.y = src0->xyz.y / src1->xyz.y;
dest->xyz.z = src0->xyz.z / src1->xyz.z;
}
void vm_vec_cdiv2(vec3d* dest, const vec3d* src) {
dest->xyz.x /= src->xyz.x;
dest->xyz.y /= src->xyz.y;
dest->xyz.z /= src->xyz.z;
}
//subs two vectors, fills in dest, returns ptr to dest
//ok for dest to equal either source, but should use vm_vec_sub2() if so
//dest = src0 - src1
void vm_vec_sub(vec3d *dest, const vec3d *src0, const vec3d *src1)
{
dest->xyz.x = src0->xyz.x - src1->xyz.x;
dest->xyz.y = src0->xyz.y - src1->xyz.y;
dest->xyz.z = src0->xyz.z - src1->xyz.z;
}
//adds one vector to another. returns ptr to dest
//dest can equal source
//dest += src
void vm_vec_add2(vec3d *dest, const vec3d *src)
{
dest->xyz.x += src->xyz.x;
dest->xyz.y += src->xyz.y;
dest->xyz.z += src->xyz.z;
}
//subs one vector from another, returns ptr to dest
//dest can equal source
//dest -= src
void vm_vec_sub2(vec3d *dest, const vec3d *src)
{
dest->xyz.x -= src->xyz.x;
dest->xyz.y -= src->xyz.y;
dest->xyz.z -= src->xyz.z;
}
//averages n vectors. returns ptr to dest
//dest can equal any vector in src[]
//dest = sum(src[]) / n
vec3d *vm_vec_avg_n(vec3d *dest, int n, const vec3d src[])
{
float x = 0.0f, y = 0.0f, z = 0.0f;
float inv_n = 1.0f / (float) n;;
for(int i = 0; i<n; i++){
x += src[i].xyz.x;
y += src[i].xyz.y;
z += src[i].xyz.z;
}
dest->xyz.x = x * inv_n;
dest->xyz.y = y * inv_n;
dest->xyz.z = z * inv_n;
return dest;
}
//averages two vectors. returns ptr to dest
//dest can equal either source
//dest = (src0 + src1) * 0.5
vec3d *vm_vec_avg(vec3d *dest, const vec3d *src0, const vec3d *src1)
{
dest->xyz.x = (src0->xyz.x + src1->xyz.x) * 0.5f;
dest->xyz.y = (src0->xyz.y + src1->xyz.y) * 0.5f;
dest->xyz.z = (src0->xyz.z + src1->xyz.z) * 0.5f;
return dest;
}
//averages three vectors. returns ptr to dest
//dest can equal any source
//dest = (src0 + src1 + src2) *0.33
vec3d *vm_vec_avg3(vec3d *dest, const vec3d *src0, const vec3d *src1, const vec3d *src2)
{
dest->xyz.x = (src0->xyz.x + src1->xyz.x + src2->xyz.x) * 0.333333333f;
dest->xyz.y = (src0->xyz.y + src1->xyz.y + src2->xyz.y) * 0.333333333f;
dest->xyz.z = (src0->xyz.z + src1->xyz.z + src2->xyz.z) * 0.333333333f;
return dest;
}
//averages four vectors. returns ptr to dest
//dest can equal any source
//dest = (src0 + src1 + src2 + src3) * 0.25
vec3d *vm_vec_avg4(vec3d *dest, const vec3d *src0, const vec3d *src1, const vec3d *src2, const vec3d *src3)
{
dest->xyz.x = (src0->xyz.x + src1->xyz.x + src2->xyz.x + src3->xyz.x) * 0.25f;
dest->xyz.y = (src0->xyz.y + src1->xyz.y + src2->xyz.y + src3->xyz.y) * 0.25f;
dest->xyz.z = (src0->xyz.z + src1->xyz.z + src2->xyz.z + src3->xyz.z) * 0.25f;
return dest;
}
//scales a vector in place.
//dest *= s
void vm_vec_scale(vec3d *dest, float s)
{
dest->xyz.x = dest->xyz.x * s;
dest->xyz.y = dest->xyz.y * s;
dest->xyz.z = dest->xyz.z * s;
}
//scales a 4-component vector in place.
// dest *= s
void vm_vec_scale(vec4 *dest, float s)
{
dest->xyzw.x = dest->xyzw.x * s;
dest->xyzw.y = dest->xyzw.y * s;
dest->xyzw.z = dest->xyzw.z * s;
dest->xyzw.w = dest->xyzw.w * s;
}
//scales and copies a vector.
// dest = src * s
void vm_vec_copy_scale(vec3d *dest, const vec3d *src, float s)
{
dest->xyz.x = src->xyz.x*s;
dest->xyz.y = src->xyz.y*s;
dest->xyz.z = src->xyz.z*s;
}
//scales a vector, adds it to another, and stores in a 3rd vector
//dest = src1 + k * src2
void vm_vec_scale_add(vec3d *dest, const vec3d *src1, const vec3d *src2, float k)
{
dest->xyz.x = src1->xyz.x + src2->xyz.x*k;
dest->xyz.y = src1->xyz.y + src2->xyz.y*k;
dest->xyz.z = src1->xyz.z + src2->xyz.z*k;
}
//scales a vector, subtracts it from another, and stores in a 3rd vector
//dest = src1 - (k * src2)
void vm_vec_scale_sub(vec3d *dest, const vec3d *src1, const vec3d *src2, float k)
{
dest->xyz.x = src1->xyz.x - src2->xyz.x*k;
dest->xyz.y = src1->xyz.y - src2->xyz.y*k;
dest->xyz.z = src1->xyz.z - src2->xyz.z*k;
}
//scales a vector and adds it to another
//dest += k * src
void vm_vec_scale_add2(vec3d *dest, const vec3d *src, float k)
{
dest->xyz.x += src->xyz.x*k;
dest->xyz.y += src->xyz.y*k;
dest->xyz.z += src->xyz.z*k;
}
//scales a vector and subtracts it from another
//dest -= k * src
void vm_vec_scale_sub2(vec3d *dest, const vec3d *src, float k)
{
dest->xyz.x -= src->xyz.x*k;
dest->xyz.y -= src->xyz.y*k;
dest->xyz.z -= src->xyz.z*k;
}
//scales a vector in place, taking n/d for scale.
//dest *= n/d
void vm_vec_scale2(vec3d *dest, float n, float d)
{
d = 1.0f/d;
dest->xyz.x = dest->xyz.x* n * d;
dest->xyz.y = dest->xyz.y* n * d;
dest->xyz.z = dest->xyz.z* n * d;
}
// interpolate between two vectors
// dest = src0 + (k * (src1 - src0))
// Might be helpful to think of vec0 as the before, and vec1 as the after
void vm_vec_linear_interpolate(vec3d* dest, const vec3d* src0, const vec3d* src1, const float k)
{
dest->xyz.x = ((src1->xyz.x - src0->xyz.x) * k) + src0->xyz.x;
dest->xyz.y = ((src1->xyz.y - src0->xyz.y) * k) + src0->xyz.y;
dest->xyz.z = ((src1->xyz.z - src0->xyz.z) * k) + src0->xyz.z;
}
//returns dot product of 2 vectors
float vm_vec_dot(const vec3d *v0, const vec3d *v1)
{
return (v1->xyz.x*v0->xyz.x)+(v1->xyz.y*v0->xyz.y)+(v1->xyz.z*v0->xyz.z);
}
//returns dot product of <x,y,z> and vector
float vm_vec_dot3(float x, float y, float z, const vec3d *v)
{
return (x*v->xyz.x)+(y*v->xyz.y)+(z*v->xyz.z);
}
//returns magnitude of a vector
float vm_vec_mag(const vec3d *v)
{
float mag1;
mag1 = (v->xyz.x * v->xyz.x) + (v->xyz.y * v->xyz.y) + (v->xyz.z * v->xyz.z);
if (mag1 <= 0.0f) {
return 0.0f;
}
return fl_sqrt(mag1);
}
//returns squared magnitude of a vector, useful if you want to compare distances
float vm_vec_mag_squared(const vec3d *v)
{
return ((v->xyz.x * v->xyz.x) + (v->xyz.y * v->xyz.y) + (v->xyz.z * v->xyz.z));
}
//returns the square of the difference between v0 and v1 (the distance, squared)
//just like vm_vec_mag_squared, but the distance between two points instead.
float vm_vec_dist_squared(const vec3d *v0, const vec3d *v1)
{
float dx, dy, dz;
dx = v0->xyz.x - v1->xyz.x;
dy = v0->xyz.y - v1->xyz.y;
dz = v0->xyz.z - v1->xyz.z;
return dx*dx + dy*dy + dz*dz;
}
//computes the distance between two points. (does sub and mag)
float vm_vec_dist(const vec3d *v0, const vec3d *v1)
{
float t1;
vec3d t;
vm_vec_sub(&t,v0,v1);
t1 = vm_vec_mag(&t);
return t1;
}
bool vm_vec_is_normalized(const vec3d *v)
{
// By the standards of FSO, it is sufficient to check that the magnitude is close to 1.
return vm_vec_mag(v) > 0.999f && vm_vec_mag(v) < 1.001f;
}
//normalize a vector. returns mag of source vec (always greater than zero)
float vm_vec_copy_normalize(vec3d *dest, const vec3d *src)
{
float m;
m = vm_vec_mag(src);
// Mainly here to trap attempts to normalize a null vector.
if (m <= 0.0f) {
nprintf(("Network", "Null vec3d in vec3d normalize.\n"
"Trace out of vecmat.cpp and find offending code.\n"));
dest->xyz.x = 1.0f;
dest->xyz.y = 0.0f;
dest->xyz.z = 0.0f;
return 1.0f;
}
float im = 1.0f / m;
dest->xyz.x = src->xyz.x * im;
dest->xyz.y = src->xyz.y * im;
dest->xyz.z = src->xyz.z * im;
return m;
}
//normalize a vector. returns mag of source vec (always greater than zero)
float vm_vec_normalize(vec3d *v)
{
float t;
t = vm_vec_copy_normalize(v,v);
return t;
}
// Normalize a vector.
// If vector is 0,0,0, return 1.0f, and change v to 1,0,0.
// Otherwise return the magnitude.
// No warning() generated for null vector.
float vm_vec_normalize_safe(vec3d *v)
{
float m;
m = vm_vec_mag(v);
// Mainly here to trap attempts to normalize a null vector.
if (m <= 0.0f) {
v->xyz.x = 1.0f;
v->xyz.y = 0.0f;
v->xyz.z = 0.0f;
return 1.0f;
}
float im = 1.0f / m;
v->xyz.x *= im;
v->xyz.y *= im;
v->xyz.z *= im;
return m;
}
//return the normalized direction vector between two points
//dest = normalized(end - start). Returns mag of direction vector
//NOTE: the order of the parameters matches the vector subtraction
float vm_vec_normalized_dir(vec3d *dest, const vec3d *end, const vec3d *start)
{
float t;
vm_vec_sub(dest,end,start);
// VECMAT-ERROR: NULL VEC3D (end == start)
t = vm_vec_normalize_safe(dest);
return t;
}
//computes surface normal from three points. result is normalized
//returns ptr to dest
//dest CANNOT equal either source
vec3d *vm_vec_normal(vec3d *dest, const vec3d *p0, const vec3d *p1, const vec3d *p2)
{
Assert(dest != p0);
Assert(dest != p1);
Assert(dest != p2);
vm_vec_perp(dest,p0,p1,p2);
vm_vec_normalize(dest);
return dest;
}
//computes cross product of two vectors.
//Note: this magnitude of the resultant vector is the
//product of the magnitudes of the two source vectors. This means it is
//quite easy for this routine to overflow and underflow. Be careful that
//your inputs are ok.
vec3d *vm_vec_cross(vec3d *dest, const vec3d *src0, const vec3d *src1)
{
dest->xyz.x = (src0->xyz.y * src1->xyz.z) - (src0->xyz.z * src1->xyz.y);
dest->xyz.y = (src0->xyz.z * src1->xyz.x) - (src0->xyz.x * src1->xyz.z);
dest->xyz.z = (src0->xyz.x * src1->xyz.y) - (src0->xyz.y * src1->xyz.x);
return dest;
}
int vm_test_parallel(const vec3d *src0, const vec3d *src1)
{
vec3d partial1;
vec3d partial2;
/*
* To test if two vectors are parallel, calculate their cross product.
* If the result is zero, then the vectors are parallel. It is better
* to compare the two cross product "partials" (for lack of a better
* word) against each other instead of the final cross product against
* zero.
*/
partial1.xyz.x = (src0->xyz.y * src1->xyz.z);
partial1.xyz.y = (src0->xyz.z * src1->xyz.x);
partial1.xyz.z = (src0->xyz.x * src1->xyz.y);
partial2.xyz.x = (src0->xyz.z * src1->xyz.y);
partial2.xyz.y = (src0->xyz.x * src1->xyz.z);
partial2.xyz.z = (src0->xyz.y * src1->xyz.x);
return vm_vec_equal(partial1, partial2);
}
//computes non-normalized surface normal from three points.
//returns ptr to dest
//dest CANNOT equal either source
vec3d *vm_vec_perp(vec3d *dest, const vec3d *p0, const vec3d *p1,const vec3d *p2)
{
Assert(dest != p0);
Assert(dest != p1);
Assert(dest != p2);
vec3d t0,t1;
vm_vec_sub(&t0,p1,p0);
vm_vec_sub(&t1,p2,p1);
return vm_vec_cross(dest,&t0,&t1);
}
//computes the delta angle between two vectors.
//vectors need not be normalized. if they are, call vm_vec_delta_ang_norm()
//the up vector (third parameter) can be NULL, in which case the absolute
//value of the angle in returned.
//Otherwise, the delta ang will be positive if the v0 -> v1 direction from the
//point of view of uvec is clockwise, negative if counterclockwise.
//This vector should be orthogonal to v0 and v1
float vm_vec_delta_ang(const vec3d *v0, const vec3d *v1, const vec3d *uvec)
{
float t;
vec3d t0,t1,t2;
vm_vec_copy_normalize(&t0,v0);
vm_vec_copy_normalize(&t1,v1);
if (uvec == nullptr) {
t = vm_vec_delta_ang_norm(&t0, &t1, NULL);
} else {
vm_vec_copy_normalize(&t2,uvec);
t = vm_vec_delta_ang_norm(&t0,&t1,&t2);
}
return t;
}
//computes the delta angle between two normalized vectors.
float vm_vec_delta_ang_norm(const vec3d *v0, const vec3d *v1, const vec3d *uvec)
{
float a;
vec3d t;
a = acosf_safe(vm_vec_dot(v0,v1));
if (uvec) {
vm_vec_cross(&t,v0,v1);
if ( vm_vec_dot(&t,uvec) < 0.0 ) {
a = -a;
}
}
return a;
}
// helper function that fills in matrix m based on provided sine and cosine values.
static matrix *sincos_2_matrix(matrix *m, float sinp, float cosp, float sinb, float cosb, float sinh, float cosh)
{
// This is the transpose of the Y1*X2*Z3 convention on wikipedia:
// https://en.wikipedia.org/wiki/Euler_angles#Rotation_matrix
//
// [(rotate h on Y) * (rotate p on X) * (rotate b on Z)]^T
//
// [( ch 0 sh ) ( 1 0 0 ) ( cb -sb 0 )]^T
// = [( 0 1 0 ) * ( 0 cp -sp ) * ( sb cb 0 )]
// [(-sh 0 ch ) ( 0 sp cp ) ( 0 0 1 )]
//
// (cb*ch+sp*sb*sh sp*cb*sh-sb*ch sh*cp)^T (cb*ch+sp*sb*sh sb*cp sp*sb*ch-cb*sh) <- rvec
// = ( sb*cp cb*cp -sp ) = (sp*cb*sh-sb*ch cb*cp sb*sh+sp*cb*ch) <- uvec
// (sp*sb*ch-cb*sh sb*sh+sp*cb*ch ch*cp) ( sh*cp -sp ch*cp ) <- fvec
//
// Alternatively we can write it as
// [(rotate h on Y) * (rotate p on X) * (rotate b on Z)]^T
// = (rotate b on Z)^T * (rotate p on X)^T * (rotate h on Y)^T
// = (rotate -b on Z) * (rotate -p on X) * (rotate -h on Y)
// which is the "most common" Z1*X2*Y3 convention on wikipedia (but with negative angles).
float sbsh,cbch,cbsh,sbch;
sbsh = sinb*sinh;
cbch = cosb*cosh;
cbsh = cosb*sinh;
sbch = sinb*cosh;
m->vec.rvec.xyz.x = cbch + sinp*sbsh; //m1
m->vec.uvec.xyz.z = sbsh + sinp*cbch; //m8
m->vec.uvec.xyz.x = sinp*cbsh - sbch; //m2
m->vec.rvec.xyz.z = sinp*sbch - cbsh; //m7
m->vec.fvec.xyz.x = sinh*cosp; //m3
m->vec.rvec.xyz.y = sinb*cosp; //m4
m->vec.uvec.xyz.y = cosb*cosp; //m5
m->vec.fvec.xyz.z = cosh*cosp; //m9
m->vec.fvec.xyz.y = -sinp; //m6
return m;
}
//computes a matrix from a set of three angles. returns ptr to matrix
matrix *vm_angles_2_matrix(matrix *m, const angles *a)
{
matrix * t;
float sinp,cosp,sinb,cosb,sinh,cosh;
sinp = sinf(a->p); cosp = cosf(a->p);
sinb = sinf(a->b); cosb = cosf(a->b);
sinh = sinf(a->h); cosh = cosf(a->h);
t = sincos_2_matrix(m,sinp,cosp,sinb,cosb,sinh,cosh);
return t;
}
//computes a matrix from one angle.
// angle_index = 0,1,2 for p,b,h
matrix *vm_angle_2_matrix(matrix *m, float a, int angle_index)
{
matrix * t;
float sinp,cosp,sinb,cosb,sinh,cosh;
/*
* Initialize sin and cos variables using an initial angle of
* zero degrees. Recall that sin(0) = 0 and cos(0) = 1.
*/
sinp = 0.0f; cosp = 1.0f;
sinb = 0.0f; cosb = 1.0f;
sinh = 0.0f; cosh = 1.0f;
switch (angle_index) {
case 0:
sinp = sinf(a); cosp = cosf(a);
break;
case 1:
sinb = sinf(a); cosb = cosf(a);
break;
case 2:
sinh = sinf(a); cosh = cosf(a);
break;
}
t = sincos_2_matrix(m,sinp,cosp,sinb,cosb,sinh,cosh);
return t;
}
//computes a matrix from a forward vector and an angle
matrix *vm_vec_ang_2_matrix(matrix *m, const vec3d *v, float a)
{
matrix * t;
float sinb,cosb,sinp,cosp,sinh,cosh;
sinb = sinf(a); cosb = cosf(a);
sinp = -v->xyz.y;
cosp = fl_sqrt(1.0f - sinp*sinp);
sinh = v->xyz.x / cosp;
cosh = v->xyz.z / cosp;
t = sincos_2_matrix(m,sinp,cosp,sinb,cosb,sinh,cosh);
return t;
}
/**
* @brief Generates a matrix from a normalized fvec.
*
* @param[in,out] matrix The matrix to generate
*
* @details The matrix's fvec is used to generate the uvec and rvec
*
* @sa vm_vector_2_matrix(), vm_vector_2_matrix_norm()
*/
void vm_vector_2_matrix_gen_vectors(matrix *m)
{
vec3d *xvec=&m->vec.rvec;
vec3d *yvec=&m->vec.uvec;
vec3d *zvec=&m->vec.fvec;
if ((zvec->xyz.x==0.0f) && (zvec->xyz.z==0.0f)) { //forward vec is straight up or down
m->vec.rvec.xyz.x = 1.0f;
m->vec.uvec.xyz.z = (zvec->xyz.y<0.0f)?1.0f:-1.0f;
m->vec.rvec.xyz.y = m->vec.rvec.xyz.z = m->vec.uvec.xyz.x = m->vec.uvec.xyz.y = 0.0f;
}
else { //not straight up or down
xvec->xyz.x = zvec->xyz.z;
xvec->xyz.y = 0.0f;
xvec->xyz.z = -zvec->xyz.x;
vm_vec_normalize(xvec);
vm_vec_cross(yvec,zvec,xvec);
}
}
matrix *vm_vector_2_matrix(matrix *m, const vec3d *fvec, const vec3d *uvec, const vec3d *rvec)
{
vec3d fvec_norm;
vm_vec_copy_normalize(&fvec_norm, fvec);
fvec = &fvec_norm;
vec3d uvec_norm;
if (uvec != nullptr) {
vm_vec_copy_normalize(&uvec_norm, uvec);
uvec = &uvec_norm;
}
vec3d rvec_norm;
if (rvec != nullptr) {
vm_vec_copy_normalize(&rvec_norm, rvec);
rvec = &rvec_norm;
}
// Call the actuall function for normalized vectors
return vm_vector_2_matrix_norm(m, fvec, uvec, rvec);
}
matrix *vm_vector_2_matrix_norm(matrix *m, const vec3d *fvec, const vec3d *uvec, const vec3d *rvec)
{
matrix temp = vmd_identity_matrix;
vec3d *xvec=&temp.vec.rvec;
vec3d *yvec=&temp.vec.uvec;
vec3d *zvec=&temp.vec.fvec;
Assert(fvec != NULL);
*zvec = *fvec;
if (uvec == NULL) {
if (rvec == NULL) { //just forward vec
vm_vector_2_matrix_gen_vectors(&temp);
}
else { //use right vec
*xvec = *rvec;
vm_vec_cross(yvec,zvec,xvec);
//normalize new perpendicular vector
vm_vec_normalize(yvec);
//now recompute right vector, in case it wasn't entirely perpendiclar
vm_vec_cross(xvec,yvec,zvec);
}
}
else { //use up vec
*yvec = *uvec;
vm_vec_cross(xvec,yvec,zvec);
if (vm_vec_equal(*xvec, vmd_zero_vector)) {
// uvec was bogus (either same as fvec or -fvec)
// Reset temp to the original values and do the setup again
temp = *m;
temp.vec.fvec = *fvec;
vm_vector_2_matrix_gen_vectors(&temp);
}
else {
//normalize new perpendicular vector
vm_vec_normalize(xvec);
//now recompute up vector, in case it wasn't entirely perpendiclar
vm_vec_cross(yvec,zvec,xvec);
}
}
// Copy the computed values into the output parameter
*m = temp;
return m;
}
// rotates a vector through a matrix, writes to *dest and returns the pointer
// if m is a rotation matrix it will preserve the length of *src, so normalised vectors will remain normalised
vec3d *vm_vec_rotate(vec3d *dest, const vec3d *src, const matrix *m)
{
*dest = (*m) * (*src);
return dest;
}
// like vm_vec_rotate, but uses the transpose matrix instead. for rotations, this is an inverse.
vec3d *vm_vec_unrotate(vec3d *dest, const vec3d *src, const matrix *m)
{
matrix mt;
vm_copy_transpose(&mt, m);
*dest = mt * (*src);
return dest;
}
//transpose a matrix in place. returns ptr to matrix
matrix *vm_transpose(matrix *m)
{
float t;
t = m->vec.uvec.xyz.x; m->vec.uvec.xyz.x = m->vec.rvec.xyz.y; m->vec.rvec.xyz.y = t;
t = m->vec.fvec.xyz.x; m->vec.fvec.xyz.x = m->vec.rvec.xyz.z; m->vec.rvec.xyz.z = t;
t = m->vec.fvec.xyz.y; m->vec.fvec.xyz.y = m->vec.uvec.xyz.z; m->vec.uvec.xyz.z = t;
return m;
}
//copy and transpose a matrix. returns ptr to matrix
//dest CANNOT equal source. use vm_transpose() if this is the case
matrix *vm_copy_transpose(matrix *dest, const matrix *src)
{
Assert(dest != src);
dest->vec.rvec.xyz.x = src->vec.rvec.xyz.x;
dest->vec.rvec.xyz.y = src->vec.uvec.xyz.x;
dest->vec.rvec.xyz.z = src->vec.fvec.xyz.x;
dest->vec.uvec.xyz.x = src->vec.rvec.xyz.y; //-V537
dest->vec.uvec.xyz.y = src->vec.uvec.xyz.y;
dest->vec.uvec.xyz.z = src->vec.fvec.xyz.y; //-V537
dest->vec.fvec.xyz.x = src->vec.rvec.xyz.z;
dest->vec.fvec.xyz.y = src->vec.uvec.xyz.z; //-V537
dest->vec.fvec.xyz.z = src->vec.fvec.xyz.z;
return dest;
}
// Old matrix multiplication routine. Note that the order of multiplication is inverted
// compared to the mathematical standard: formally, this calculates src1 * src0
matrix *vm_matrix_x_matrix(matrix *dest, const matrix *src0, const matrix *src1)
{
*dest = (*src1) * (*src0);
return dest;
}
//extract angles from a matrix
angles *vm_extract_angles_matrix(angles *a, const matrix *m)
{
float sinh,cosh,cosp;
a->h = atan2(m->vec.fvec.xyz.x,m->vec.fvec.xyz.z);
sinh = sinf(a->h); cosh = cosf(a->h);
if (fl_abs(sinh) > fl_abs(cosh)) //sine is larger, so use it
cosp = m->vec.fvec.xyz.x*sinh;
else //cosine is larger, so use it
cosp = m->vec.fvec.xyz.z*cosh;
//using the fvec_xz_distance extracts the correct pitch from the matrix --wookieejedi
//previously cosp was used as the denominator, but this resulted in some incorrect pitch extractions
float fvec_xz_distance;
fvec_xz_distance = fl_sqrt( ( (m->vec.fvec.xyz.x)*(m->vec.fvec.xyz.x) ) + ( (m->vec.fvec.xyz.z)*(m->vec.fvec.xyz.z) ) );
a->p = atan2(-m->vec.fvec.xyz.y, fvec_xz_distance);
if (cosp == 0.0f) //the cosine of pitch is zero. we're pitched straight up. say no bank
a->b = 0.0f;
else {
float sinb,cosb;
sinb = m->vec.rvec.xyz.y/cosp;
cosb = m->vec.uvec.xyz.y/cosp;
a->b = atan2(sinb,cosb);
}
return a;
}
// alternate method for extracting angles which seems to be
// less susceptible to rounding errors -- see section 8.7.2
// (pages 278-281) of 3D Math Primer for Graphics and Game
// Development, 2nd Edition
// http://books.google.com/books?id=X3hmuhBoFF0C&printsec=frontcover#v=onepage&q&f=false
angles *vm_extract_angles_matrix_alternate(angles *a, const matrix *m)
{
Assert(a != NULL);
Assert(m != NULL);
a->p = asinf_safe(-m->vec.fvec.xyz.y);
// Check for the Gimbal lock case, giving a slight tolerance
// for numerical imprecision
if (fabs(m->vec.fvec.xyz.y) > 0.9999f) {
// We are looking straight up or down.
// Slam bank to zero and just set heading
a->b = 0.0f;
a->h = atan2(-m->vec.rvec.xyz.z, m->vec.rvec.xyz.x);
} else {
// Compute heading
a->h = atan2(m->vec.fvec.xyz.x, m->vec.fvec.xyz.z);
// Compute bank
a->b = atan2(m->vec.rvec.xyz.y, m->vec.uvec.xyz.y);
}
return a;
}
//extract heading and pitch from a vector, assuming bank==0
static angles *vm_extract_angles_vector_normalized(angles *a, const vec3d *v)
{
a->b = 0.0f; //always zero bank
a->p = asinf_safe(-v->xyz.y);
a->h = atan2(v->xyz.z,v->xyz.x);
return a;
}
//extract heading and pitch from a vector, assuming bank==0
angles *vm_extract_angles_vector(angles *a, const vec3d *v)
{
vec3d t;
vm_vec_copy_normalize(&t,v);
vm_extract_angles_vector_normalized(a,&t);
return a;
}
//compute the distance from a point to a plane. takes the normalized normal
//of the plane (ebx), a point on the plane (edi), and the point to check (esi).
//returns distance in eax
//distance is signed, so negative dist is on the back of the plane
float vm_dist_to_plane(const vec3d *checkp, const vec3d *norm, const vec3d *planep)
{
float t1;
vec3d t;
vm_vec_sub(&t,checkp,planep);
t1 = vm_vec_dot(&t,norm);
return t1;
}
// Given mouse movement in dx, dy, returns a 3x3 rotation matrix in RotMat.
// Taken from Graphics Gems III, page 51, "The Rolling Ball"
// Example:
//if ( (Mouse.dx!=0) || (Mouse.dy!=0) ) {
// GetMouseRotation( Mouse.dx, Mouse.dy, &MouseRotMat );
// vm_matrix_x_matrix(&tempm,&LargeView.ev_matrix,&MouseRotMat);
// LargeView.ev_matrix = tempm;
//}
void vm_trackball( int idx, int idy, matrix * RotMat )
{
float dr, cos_theta, sin_theta, denom, cos_theta1;
float Radius = 100.0f;
float dx,dy;
float dxdr,dydr;
idy *= -1;
dx = (float)idx; dy = (float)idy;
dr = fl_sqrt(dx*dx+dy*dy);
denom = fl_sqrt(Radius*Radius+dr*dr);
cos_theta = Radius/denom;
sin_theta = dr/denom;
cos_theta1 = 1.0f - cos_theta;
dxdr = dx/dr;
dydr = dy/dr;
RotMat->vec.rvec.xyz.x = cos_theta + (dydr*dydr)*cos_theta1;
RotMat->vec.uvec.xyz.x = - ((dxdr*dydr)*cos_theta1);
RotMat->vec.fvec.xyz.x = (dxdr*sin_theta);
RotMat->vec.rvec.xyz.y = RotMat->vec.uvec.xyz.x;
RotMat->vec.uvec.xyz.y = cos_theta + ((dxdr*dxdr)*cos_theta1);
RotMat->vec.fvec.xyz.y = (dydr*sin_theta);
RotMat->vec.rvec.xyz.z = -RotMat->vec.fvec.xyz.x;
RotMat->vec.uvec.xyz.z = -RotMat->vec.fvec.xyz.y;
RotMat->vec.fvec.xyz.z = cos_theta;
}
// Compute the outer product of A = A * transpose(A). 1x3 vector becomes 3x3 matrix.
static void vm_vec_outer_product(matrix *mat, const vec3d *vec)
{
mat->vec.rvec.xyz.x = vec->xyz.x * vec->xyz.x;
mat->vec.rvec.xyz.y = vec->xyz.x * vec->xyz.y;
mat->vec.rvec.xyz.z = vec->xyz.x * vec->xyz.z;
mat->vec.uvec.xyz.x = vec->xyz.y * vec->xyz.x; //-V537
mat->vec.uvec.xyz.y = vec->xyz.y * vec->xyz.y;
mat->vec.uvec.xyz.z = vec->xyz.y * vec->xyz.z; //-V537
mat->vec.fvec.xyz.x = vec->xyz.z * vec->xyz.x;
mat->vec.fvec.xyz.y = vec->xyz.z * vec->xyz.y; //-V537
mat->vec.fvec.xyz.z = vec->xyz.z * vec->xyz.z;
}
// Find the point on the line between p0 and p1 that is nearest to int_pnt.
// Stuff result in nearest_point.
// Uses algorithm from page 148 of Strang, Linear Algebra and Its Applications.
// Returns value indicating whether *nearest_point is between *p0 and *p1.
// 0.0f means *nearest_point is *p0, 1.0f means it's *p1. 2.0f means it's beyond p1 by 2x.
// -1.0f means it's "before" *p0 by 1x.
float find_nearest_point_on_line(vec3d *nearest_point, const vec3d *p0, const vec3d *p1, const vec3d *int_pnt)
{
vec3d norm, xlated_int_pnt, projected_point;
matrix mat;
float mag, dot;
vm_vec_sub(&norm, p1, p0);
vm_vec_sub(&xlated_int_pnt, int_pnt, p0);
if (IS_VEC_NULL_SQ_SAFE(&norm)) {
*nearest_point = *int_pnt;
return 9999.9f;
}
mag = vm_vec_normalize(&norm); // Normalize vector so we don't have to divide by dot product.
if (mag < 0.01f) {
*nearest_point = *int_pnt;
return 9999.9f;
// Warning(LOCATION, "Very small magnitude in find_nearest_point_on_line.\n");
}
vm_vec_outer_product(&mat, &norm);
vm_vec_rotate(&projected_point, &xlated_int_pnt, &mat);
vm_vec_add(nearest_point, &projected_point, p0);
dot = vm_vec_dot(&norm, &projected_point);
return dot/mag;
}
int find_intersection(float* s, const vec3d* p0, const vec3d* p1, const vec3d* v0, const vec3d* v1)
{
// Vector v2 forms an edge between v0 and v1, thus forming a triangle.
// An intersection exists between v0 and v1 if their cross product is parallel with the cross product of v2 and v1
// The scalar of v0 can then be found by the ratio between the two cross products
vec3d v2, crossA, crossB;
vm_vec_sub(&v2, p1, p0);
vm_vec_cross(&crossA, v0, v1);
vm_vec_cross(&crossB, &v2, v1);
if (vm_vec_equal(crossA, vmd_zero_vector)) {
// Colinear
return -1;
}
if (!vm_test_parallel(&crossA, &crossB)) {
// The two cross products are not parallel, so no intersection between v0 and v1
return -2;
}
*s = vm_vec_mag(&crossB) / vm_vec_mag(&crossA);
return 0;
}
void find_point_on_line_nearest_skew_line(vec3d *dest, const vec3d *p1, const vec3d *d1, const vec3d *p2, const vec3d *d2)
{
vec3d n, n2, pdiff;
// The cross product of the direction vectors is perpendicular to both lines
vm_vec_cross(&n, d1, d2);
// The plane formed by the translations of Line 2 along n contains the point p2 and is perpendicular to n2 = d2 x n
vm_vec_cross(&n2, d2, &n);
// So now we find the intersection of Line 1 with that plane, which is apparently this gibberish
vm_vec_sub(&pdiff, p2, p1);
float numerator = vm_vec_dot(&pdiff, &n2);
float denominator = vm_vec_dot(d1, &n2);
vm_vec_scale_add(dest, p1, d1, numerator / denominator);
}
// normalizes only if above a threshold, returns if normalized or not
bool vm_maybe_normalize(vec3d* dst, const vec3d* src, float threshold) {
float mag = vm_vec_mag(src);
if (mag < threshold) return false;
vm_vec_copy_scale(dst, src, 1 / mag);
return true;
}
// Produce a vector perpendicular to the normalized input vector unit_normal,
// in the direction preference (if not null). If that direction doesn't work it picks the z or y direction,
// so that an output perpendicular vector is guaranteed.
void vm_orthogonalize_one_vec(vec3d* dst, const vec3d* unit_normal, const vec3d* preference) {
if (preference != nullptr) {
vm_vec_projection_onto_plane(dst, preference, unit_normal);
if (vm_maybe_normalize(dst, dst)) {
// The process of rescaling dst may have exaggerated floating point inaccuracy
// so that dst is no longer approximately orthogonal to unit_normal,
// so project it again.
if (fabs(vm_vec_dot(dst, unit_normal)) > 1e-4f) {
vm_vec_projection_onto_plane(dst, dst, unit_normal);
vm_vec_normalize(dst);
}
return;
}
}
vm_vec_projection_onto_plane(dst, &vmd_z_vector, unit_normal);
if (vm_maybe_normalize(dst, dst)) return;
vm_vec_projection_onto_plane(dst, &vmd_y_vector, unit_normal);
}
// Produce two vectors perpendicular to each other from two arbitrary vectors src1, src2.
// In the normal case dst1 will point in the direction of src1 and dst2 will be in the plane
// of src1, src2 and perpendicular to dst1, but in the case of degeneracy it tries to
// give useful results. The vector preference is a third vector (which may be null)
// that will be considered in case the first two vectors are zero.
void vm_orthogonalize_two_vec(vec3d* dst1, vec3d* dst2, const vec3d* src1, const vec3d* src2, const vec3d* preference) {
if (vm_maybe_normalize(dst1, src1))
vm_orthogonalize_one_vec(dst2, dst1, src2);
else if (vm_maybe_normalize(dst2, src2))
vm_orthogonalize_one_vec(dst1, dst2, src1);
else {
if (preference == nullptr || !vm_maybe_normalize(dst1, preference))
vm_vec_make(dst1, 1, 0, 0);
vm_orthogonalize_one_vec(dst2, dst1, src2);
}
}
// make sure matrix is orthogonal
// computes a matrix from one or more vectors. The forward vector is required,
// with the other two being optional. If both up & right vectors are passed,
// the up vector is used. If only the forward vector is passed, a bank of
// zero is assumed
void vm_orthogonalize_matrix(matrix *m_src)
{
vec3d fvec, uvec;
vm_orthogonalize_two_vec(&fvec, &uvec, &m_src->vec.fvec, &m_src->vec.uvec, &m_src->vec.rvec);
vm_vec_cross(&m_src->vec.rvec, &uvec, &fvec);
m_src->vec.fvec = fvec;
m_src->vec.uvec = uvec;
}
// like vm_orthogonalize_matrix(), except that zero vectors can exist within the
// matrix without causing problems. Valid vectors will be created where needed.
void vm_fix_matrix(matrix *m)
{
float fmag, umag, rmag;
fmag = vm_vec_mag(&m->vec.fvec);
umag = vm_vec_mag(&m->vec.uvec);
rmag = vm_vec_mag(&m->vec.rvec);
if (fmag <= 0.0f) {
if ((umag > 0.0f) && (rmag > 0.0f) && !vm_test_parallel(&m->vec.uvec, &m->vec.rvec)) {
vm_vec_cross(&m->vec.fvec, &m->vec.uvec, &m->vec.rvec);
vm_vec_normalize(&m->vec.fvec);
} else if (umag > 0.0f) {
if (!m->vec.uvec.xyz.x && !m->vec.uvec.xyz.y && m->vec.uvec.xyz.z) // z vector
vm_vec_make(&m->vec.fvec, 1.0f, 0.0f, 0.0f);
else
vm_vec_make(&m->vec.fvec, 0.0f, 0.0f, 1.0f);
}
} else
vm_vec_normalize(&m->vec.fvec);
// we now have a valid and normalized forward vector
if ((umag <= 0.0f) || vm_test_parallel(&m->vec.fvec, &m->vec.uvec)) { // no up vector to use..
if ((rmag <= 0.0f) || vm_test_parallel(&m->vec.fvec, &m->vec.rvec)) { // no right vector either, so make something up
if (!m->vec.fvec.xyz.x && m->vec.fvec.xyz.y && !m->vec.fvec.xyz.z) // vertical vector
vm_vec_make(&m->vec.uvec, 0.0f, 0.0f, -1.0f);
else
vm_vec_make(&m->vec.uvec, 0.0f, 1.0f, 0.0f);
} else { // use the right vector to figure up vector
vm_vec_cross(&m->vec.uvec, &m->vec.fvec, &m->vec.rvec);
vm_vec_normalize(&m->vec.uvec);
}
} else
vm_vec_normalize(&m->vec.uvec);
// we now have both valid and normalized forward and up vectors
vm_vec_cross(&m->vec.rvec, &m->vec.uvec, &m->vec.fvec);
//normalize new perpendicular vector
vm_vec_normalize(&m->vec.rvec);
//now recompute up vector, in case it wasn't entirely perpendiclar
vm_vec_cross(&m->vec.uvec, &m->vec.fvec, &m->vec.rvec);
}
//Rotates the orient matrix by the angles in tangles and then
//makes sure that the matrix is orthogonal.
void vm_rotate_matrix_by_angles( matrix *orient, const angles *tangles )
{
matrix rotmat,new_orient;
vm_angles_2_matrix(&rotmat,tangles);
vm_matrix_x_matrix(&new_orient,orient,&rotmat);
*orient = new_orient;
vm_orthogonalize_matrix(orient);
}
// dir must be normalized!
float vm_vec_dot_to_point(const vec3d *dir, const vec3d *p1, const vec3d *p2)
{
vec3d tvec;
vm_vec_sub(&tvec, p2, p1);
// VECMAT-ERROR: NULL VEC3D (p1 == p2)
vm_vec_normalize_safe(&tvec);
return vm_vec_dot(dir, &tvec);
}
/////////////////////////////////////////////////////////
// Given a plane and a point, return the point on the plane closest the the point.
// Result returned in q.
void compute_point_on_plane(vec3d *q, const plane *planep, const vec3d *p)
{
float k;
vec3d normal;
normal.xyz.x = planep->A;
normal.xyz.y = planep->B;
normal.xyz.z = planep->C;
k = (planep->D + vm_vec_dot(&normal, p)) / vm_vec_dot(&normal, &normal);
vm_vec_scale_add(q, p, &normal, -k);
}
// Generate a fairly random vector that's normalized.
void vm_vec_rand_vec(vec3d *rvec)
{
rvec->xyz.x = (frand() - 0.5f) * 2;
rvec->xyz.y = (frand() - 0.5f) * 2;
rvec->xyz.z = (frand() - 0.5f) * 2;
if (IS_VEC_NULL_SQ_SAFE(rvec))
rvec->xyz.x = 1.0f;
vm_vec_normalize(rvec);
}
// Given an point "in" rotate it by "angle" around an
// arbritary line defined by a point on the line "line_point"
// and the normalized line direction, "line_dir"
// Returns the rotated point in "out".
void vm_rot_point_around_line(vec3d *out, const vec3d *in, float angle, const vec3d *line_point, const vec3d *line_dir)
{
vec3d tmp, tmp1;
matrix m, r;
angles ta;
vm_vector_2_matrix_norm(&m, line_dir, NULL, NULL );
ta.p = ta.h = 0.0f;
ta.b = angle;
vm_angles_2_matrix(&r,&ta);
vm_vec_sub( &tmp, in, line_point ); // move relative to a point on line
vm_vec_rotate( &tmp1, &tmp, &m); // rotate into line's base
vm_vec_rotate( &tmp, &tmp1, &r); // rotate around Z
vm_vec_unrotate( &tmp1, &tmp, &m); // unrotate out of line's base
vm_vec_add( out, &tmp1, line_point ); // move back to world coordinates
}
// Given two position vectors, return 0 if the same, else non-zero.
int vm_vec_cmp( const vec3d * a, const vec3d * b )
{
float diff = vm_vec_dist(a,b);
//mprintf(( "Diff=%.32f\n", diff ));
if ( diff > 0.005f )
return 1;
else
return 0;
}
// Given two orientation matrices, return 0 if the same, else non-zero.
int vm_matrix_cmp(const matrix * a, const matrix * b)
{
float tmp1,tmp2,tmp3;
tmp1 = fl_abs(vm_vec_dot( &a->vec.uvec, &b->vec.uvec ) - 1.0f);
tmp2 = fl_abs(vm_vec_dot( &a->vec.fvec, &b->vec.fvec ) - 1.0f);
tmp3 = fl_abs(vm_vec_dot( &a->vec.rvec, &b->vec.rvec ) - 1.0f);
// mprintf(( "Mat=%.16f, %.16f, %.16f\n", tmp1, tmp2, tmp3 ));
if ( tmp1 > 0.0000005f ) return 1;
if ( tmp2 > 0.0000005f ) return 1;
if ( tmp3 > 0.0000005f ) return 1;
return 0;
}
// Moves angle 'h' towards 'desired_angle', taking the shortest
// route possible. It will move a maximum of 'step_size' radians
// each call. All angles in radians.
float vm_interp_angle( float *h, float desired_angle, float step_size, bool force_front )
{
float delta;
float abs_delta;
if ( desired_angle < 0.0f ) desired_angle += PI2;
if ( desired_angle > PI2 ) desired_angle -= PI2;
delta = desired_angle - *h;
abs_delta = fl_abs(delta);
if ((force_front) && ((desired_angle > PI) ^ (*h > PI)) ) {
// turn away from PI
if ( *h > PI )
delta = abs_delta;
else
delta = -abs_delta;
} else {
if ( abs_delta > PI ) {
// Go the other way, since it will be shorter.
if ( delta > 0.0f ) {
delta = delta - PI2;
} else {
delta = PI2 - delta;
}
}
}
if ( delta > step_size )
*h += step_size;
else if ( delta < -step_size )
*h -= step_size;
else
*h = desired_angle;
// If we wrap outside of 0 to 2*PI, then put the
// angle back in the range 0 to 2*PI.
if ( *h > PI2 ) *h -= PI2;
if ( *h < 0.0f ) *h += PI2;
return delta;
}
float vm_delta_from_interp_angle( float current_angle, float desired_angle )
{
float delta;
if ( desired_angle < 0.0f ) desired_angle += PI2;
if ( desired_angle > PI2 ) desired_angle -= PI2;
delta = desired_angle - current_angle;
if ( fl_abs(delta) > PI ) {
if ( delta > 0.0f ) {
delta = delta - PI2;
} else {
delta = PI2 - delta;
}
}
return delta;
}
// check a matrix for zero rows and columns
int vm_check_matrix_for_zeros(const matrix *m)
{
if (!m->vec.fvec.xyz.x && !m->vec.fvec.xyz.y && !m->vec.fvec.xyz.z)
return 1;
if (!m->vec.rvec.xyz.x && !m->vec.rvec.xyz.y && !m->vec.rvec.xyz.z)
return 1;
if (!m->vec.uvec.xyz.x && !m->vec.uvec.xyz.y && !m->vec.uvec.xyz.z)
return 1;
if (!m->vec.fvec.xyz.x && !m->vec.rvec.xyz.x && !m->vec.uvec.xyz.x)
return 1;
if (!m->vec.fvec.xyz.y && !m->vec.rvec.xyz.y && !m->vec.uvec.xyz.y)
return 1;
if (!m->vec.fvec.xyz.z && !m->vec.rvec.xyz.z && !m->vec.uvec.xyz.z)
return 1;
return 0;
}
// see if two vectors are the same
int vm_vec_same(const vec3d *v1, const vec3d *v2)
{
if ( v1->xyz.x == v2->xyz.x && v1->xyz.y == v2->xyz.y && v1->xyz.z == v2->xyz.z )
return 1;
return 0;
}
// see if two matrices are the same
int vm_matrix_same(matrix *m1, matrix *m2)
{
int i;
for (i = 0; i < 9; i++)
if (m1->a1d[i] != m2->a1d[i])
return 0;
return 1;
}
// --------------------------------------------------------------------------------------
void vm_quaternion_to_matrix(matrix* M, float a, float b, float c, float s) {
// 1st ROW vector
M->vec.rvec.xyz.x = 1.0f - 2.0f * b * b - 2.0f * c * c;
M->vec.rvec.xyz.y = 2.0f * a * b + 2.0f * s * c;
M->vec.rvec.xyz.z = 2.0f * a * c - 2.0f * s * b;
// 2nd ROW vector
M->vec.uvec.xyz.x = 2.0f * a * b - 2.0f * s * c;
M->vec.uvec.xyz.y = 1.0f - 2.0f * a * a - 2.0f * c * c;
M->vec.uvec.xyz.z = 2.0f * b * c + 2.0f * s * a;
// 3rd ROW vector
M->vec.fvec.xyz.x = 2.0f * a * c + 2.0f * s * b;
M->vec.fvec.xyz.y = 2.0f * b * c - 2.0f * s * a;
M->vec.fvec.xyz.z = 1.0f - 2.0f * a * a - 2.0f * b * b;
}
void vm_quaternion_rotate(matrix *M, float theta, const vec3d *u)
// given an arbitrary rotation axis and rotation angle, function generates the
// corresponding rotation matrix
//
// M is the return rotation matrix theta is the angle of rotation
// u is the direction of the axis.
// this is adapted from Computer Graphics (Hearn and Bker 2nd ed.) p. 420
//
{
float a,b,c, s;
float sin_theta = sinf(theta * 0.5f);
a = (u->xyz.x * sin_theta);
b = (u->xyz.y * sin_theta);
c = (u->xyz.z * sin_theta);
s = cosf(theta * 0.5f);
vm_quaternion_to_matrix(M, a, b, c, s);
}
// --------------------------------------------------------------------------------------
//void vm_matrix_to_rot_axis_and_angle(matrix *m, float *theta, vec3d *rot_axis)
// Converts a matrix into a rotation axis and an angle around that axis
// Note for angle is very near 0, returns 0 with axis of (1,0,0)
// For angles near PI, returns PI with correct axis
//
// rot_axis - the resultant axis of rotation
// theta - the resultatn rotation around the axis
// m - the initial matrix
void vm_matrix_to_rot_axis_and_angle(const matrix *m, float *theta, vec3d *rot_axis)
{
float trace = m->a2d[0][0] + m->a2d[1][1] + m->a2d[2][2];
float cos_theta = 0.5f * (trace - 1.0f);
if (cos_theta > 0.999999875f) { // angle is less than 1 milirad (0.057 degrees)
*theta = 0.0f;
vm_vec_make(rot_axis, 1.0f, 0.0f, 0.0f);
} else if (cos_theta > -0.999999875f) { // angle is within limits between 0 and PI
*theta = acosf_safe(cos_theta);
Assert( !fl_is_nan(*theta) );
rot_axis->xyz.x = (m->vec.uvec.xyz.z - m->vec.fvec.xyz.y);
rot_axis->xyz.y = (m->vec.fvec.xyz.x - m->vec.rvec.xyz.z);
rot_axis->xyz.z = (m->vec.rvec.xyz.y - m->vec.uvec.xyz.x);
if (IS_VEC_NULL_SQ_SAFE(rot_axis)) {
vm_vec_make(rot_axis, 1.0f, 0.0f, 0.0f);
} else {
vm_vec_normalize(rot_axis);
}
} else { // angle is PI within limits
*theta = PI;
// find index of largest diagonal term
int largest_diagonal_index = 0;
if (m->a2d[1][1] > m->a2d[0][0]) {
largest_diagonal_index = 1;
}
if (m->a2d[2][2] > m->a2d[largest_diagonal_index][largest_diagonal_index]) {
largest_diagonal_index = 2;
}
switch (largest_diagonal_index) {
case 0:
float ix;
rot_axis->xyz.x = fl_sqrt(m->a2d[0][0] + 1.0f);
ix = 1.0f / rot_axis->xyz.x;
rot_axis->xyz.y = m->a2d[0][1] * ix;
rot_axis->xyz.z = m->a2d[0][2] * ix;
break;
case 1:
float iy;
rot_axis->xyz.y = fl_sqrt(m->a2d[1][1] + 1.0f);
iy = 1.0f / rot_axis->xyz.y;
rot_axis->xyz.x = m->a2d[1][0] * iy;
rot_axis->xyz.z = m->a2d[1][2] * iy;
break;
case 2:
float iz;
rot_axis->xyz.z = fl_sqrt(m->a2d[2][2] + 1.0f);
iz = 1.0f / rot_axis->xyz.z;
rot_axis->xyz.x = m->a2d[2][0] * iz;
rot_axis->xyz.y = m->a2d[2][1] * iz;
break;
default:
Int3(); // this should never happen
break;
}
// normalize rotation axis
vm_vec_normalize(rot_axis);
}
}
// Given a rotation axis, calculates the angle that results in the rotation closest to the given matrix m.
// If the axis is equal or very close to the orientation of the matrix, returns false and an angle of 0
float vm_closest_angle_to_matrix(const matrix* mat, const vec3d* rot_axis, float* angle){
// The relative rotation between m and the target rotation r (made from axis a and angle x) is m^T.r
// The resulting angle between those, as shown by http://www.boris-belousov.net/2016/12/01/quat-dist/ is arccos((tr(m^T.r)-1) / 2)
// tr(m^T.r) simplifies to the following:
// tr = m[0]+m[4]+m[8] - 2( m[0]*(a[1]^2+a[2]^2) + m[4]*(a[0]^2+a[2]^2) + m[8]*(a[0]^2+a[1]^2) -
// a[0]*a[1]*(m[1]+m[3]) - a[0]*a[2]*(m[2]+m[6]) - a[1]*a[2]*(m[5]+m[7])) * sin(1/2 * x)^2
// + (a[0]*(m[5]-m[7]) + a[1]*(-m[2]+m[6]) + a[2]*(m[1]-m[3])) * sin(x)
// The factor before the sine squared will be calculated as y, the factor before the sine as z, the summand as w:
const auto& m = mat->a1d;
const auto& a = rot_axis->a1d;
const float w = m[0]+m[4]+m[8];
const float y = -2 * ( m[0]*(a[1]*a[1]+a[2]*a[2]) + m[4]*(a[0]*a[0]+a[2]*a[2]) + m[8]*(a[0]*a[0]+a[1]*a[1]) -
a[0]*a[1]*(m[1]+m[3]) - a[0]*a[2]*(m[2]+m[6]) - a[1]*a[2]*(m[5]+m[7]));
const float z = (a[0]*(m[5]-m[7]) + a[1]*(-m[2]+m[6]) + a[2]*(m[1]-m[3]));
// If both y and z are close to 0, then the rotation axis points in the same direction as the matrix, thus any orientation r would be perpendicular to m
// If y or z is 0, the rest of the math simplifies
const float ay = fabs(y);
const float az = fabs(z);
if(ay < 0.001f && az < 0.001f){
*angle = 0.0f;
return PI_2;
}
else if(ay < 0.001f) {
*angle = copysignf(PI_2, z);
return acosf_safe((w + az - 1.0f) * 0.5f);
}
// arccos((x-1)/2) is then minimal, when x between -1 and 3 approaches 3
// Thus we are looking for the maximum of a term in the form of f(x)=w+y*sin(x/2)^2+z*sin(x)
// This maximum can be on one of the four solutions of f'(x)=0, not counting periodic repetitions
std::array<float,4> solutions;
if(az < 0.001f) {
solutions = {PI, PI2, PI + PI2, 2.0f * PI2};
}
else {
const float sr = sqrtf(y * y * y * y + 4 * y * y * z * z);
const float sr_neg = sqrtf(1 - (sr / (y * y + 4 * z * z)));
const float sr_pos = sqrtf(1 + (sr / (y * y + 4 * z * z)));
//If we support IEEE float handling, we don't need this, the div by 0 will be handled correctly with the INF. If not, do this:
const float yz_recip = (!std::numeric_limits<float>::is_iec559 && y * z < 0.001f) ? FLT_MAX : 1.0f / (y * z);
solutions = { 2 * atan2(-sr_neg * (y * y + sr) * yz_recip, -2 * sr_neg),
2 * atan2(sr_neg * (y * y + sr) * yz_recip, 2 * sr_neg),
2 * atan2(-sr_pos * (y * y - sr) * yz_recip, -2 * sr_pos),
2 * atan2(sr_pos * (y * y - sr) * yz_recip, 2 * sr_pos) };
}
float value = -2.0f;
float correct = 0;
//For whichever of these, w+y*sin(x/2)^2+z*sin(x) is closest to 3 / larger (since the result is between -1 and 3) is our target angle
for(float solution : solutions){
float currentVal = w + y * sinf(solution * 0.5f) * sinf(solution * 0.5f) + z * sinf(solution);
if(currentVal > value){
value = currentVal;
correct = solution;
}
}
Assertion(value > -1.5f, "Did not find solution for closest angle & axis to matrix.");
// Convert to 0 to 2Pi
while (correct < 0.0f)
correct += PI2;
while (correct > PI2)
correct -= PI2;
*angle = correct;
return acosf_safe((value - 1.0f) * 0.5f);
}
// --------------------------------------------------------------------------------------
void get_camera_limits(const matrix *start_camera, const matrix *end_camera, float time, vec3d *acc_max, vec3d *w_max)
{
matrix temp, rot_matrix;
float theta;
vec3d rot_axis;
vec3d angle;
// determine the necessary rotation matrix
vm_copy_transpose(&temp, start_camera);
vm_matrix_x_matrix(&rot_matrix, &temp, end_camera);
vm_orthogonalize_matrix(&rot_matrix);
// determine the rotation axis and angle
vm_matrix_to_rot_axis_and_angle(&rot_matrix, &theta, &rot_axis);
// find the rotation about each axis
angle.xyz.x = theta * rot_axis.xyz.x;
angle.xyz.y = theta * rot_axis.xyz.y;
angle.xyz.z = theta * rot_axis.xyz.z;
// allow for 0 time input
if (time <= 1e-5f) {
vm_vec_make(acc_max, 0.0f, 0.0f, 0.0f);
vm_vec_make(w_max, 0.0f, 0.0f, 0.0f);
} else {
// find acceleration limit using (theta/2) takes (time/2)
// and using const accel theta = 1/2 acc * time^2
acc_max->xyz.x = 4.0f * fl_abs(angle.xyz.x) / (time * time);
acc_max->xyz.y = 4.0f * fl_abs(angle.xyz.y) / (time * time);
acc_max->xyz.z = 4.0f * fl_abs(angle.xyz.z) / (time * time);
// find angular velocity limits
// w_max = acc_max * time / 2
w_max->xyz.x = acc_max->xyz.x * time / 2.0f;
w_max->xyz.y = acc_max->xyz.y * time / 2.0f;
w_max->xyz.z = acc_max->xyz.z * time / 2.0f;
}
}
#define OVERSHOOT_PREVENTION_PADDING 0.98f
// physically models within the frame the physical behavior to get to a goal position
// given an arbitrary initial velocity
void vm_angular_move_1dimension_calc(float goal, float* vel, float delta_t,
float* dist, float vel_limit, float acc_limit)
{
// These diagrams depict two common situations, and although they both start with negative velocity
// for illustrative purposes, it is not necessary and the apex may be at the present or even in the past.
//
// t1 < t2 means there is a straight segment, so we coast for some time
//
// _..--- goal
// now .''
// | .' |
// v .' |
// . .' t_straight
// ''-.-''|
// apex t1 (= t_up)
//
// t1 > t2, no straight segment, accelerate then deccelerate, no coasting
//
// now _..--- goal
// | .'
// v .
// . .|
// ''-.-'' |
// apex t2 (= t_up)
//
float t1 = (vel_limit - *vel) / acc_limit; // time to accelerate from the current velocity (possibly negative) to +vel_limit
float apex_t = -*vel / acc_limit; // the time when we had / will have velocity zero, assuming acceleration at +acc_limit
float apex = *vel * apex_t / 2; // the position we had / will have at the apex
float switchover_point = OVERSHOOT_PREVENTION_PADDING / (OVERSHOOT_PREVENTION_PADDING + 1.f); // when on the path
// we switch from accelerating to deccelerating (very close to 1/2)
float half_dist = (goal - *dist - apex) * switchover_point; // half the distance from apex to goal (where we hit peak velocity)
float t2 = apex_t + fl_sqrt(2 * half_dist / acc_limit); // The time at which we reach half_dist, assuming we never hit vel_limit
float t_up = fmin(delta_t, fmin(t1, t2)); // We exit the initial upward curve when we either hit vel_limit (t1)
// or we start the approach to the goal (t2), so t_up is the min
// add distance and vel for t_up
*dist += *vel * t_up + acc_limit * t_up * t_up / 2;
*vel += acc_limit * t_up;
// If we have run out of time in the frame, break, else advance by t_up
if (delta_t <= t_up) return;
delta_t -= t_up;
// If t1 <= t2 then we have a straight segment (cruising at +vel_limit)
if (t1 <= t2) {
// time it takes to reach the approach
float t_straight = fmin(delta_t, (goal - 0.5f * vel_limit * vel_limit / acc_limit - *dist) / vel_limit);
// add distance and vel
*dist += vel_limit * t_straight;
// If we have run out of time in the frame, break, else advance by t_straight
if (delta_t <= t_straight) return;
delta_t -= t_straight;
}
// On approach to the goal, with acceleration -acc_limit
// Our current velocity is either vel_limit if we had a straight segment, or the peak velocity at half_dist
// slow down our acc very slightly to avoid possible time costly overshoot
acc_limit *= OVERSHOOT_PREVENTION_PADDING;
// t_down is the time to slow to a stop
float t_down = fmin(delta_t, *vel / acc_limit);
// add distance and vel for t_down
*dist += *vel * t_down - acc_limit * t_down * t_down / 2;
*vel -= acc_limit * t_down;
// If we have run out of time in the frame, break, else advance by t_down
if (delta_t <= t_down) return;
// We've arrived
*dist = goal;
*vel = 0;
}
// physically models within the frame the physical behavior to get to a one-dimensional goal position
// given an arbitrary initial velocity
float vm_angular_move_1dimension(float goal, float delta_t, float* vel, float vel_limit, float acc_limit, float slowdown_factor, bool force_no_overshoot)
{
float effective_vel_limit = slowdown_factor == 0 ? 0 : slowdown_factor * vel_limit;
float effective_acc_limit = slowdown_factor == 0 ? 0 : slowdown_factor * acc_limit;
if (acc_limit <= 0) return *vel * delta_t; // Can't accelerate? No point in continuing!
float dist = 0;
float t_slow = fmin(delta_t, (fabs(*vel) - effective_vel_limit) / acc_limit); // Time until we get down to our max speed
if (t_slow > 0) { // If that's zero (were at max) or negative (below max)
float acc = *vel >= 0 ? -acc_limit : acc_limit; // excellent, but otherwise, there's no choices to make
dist += *vel * t_slow + acc * t_slow * t_slow / 2; // slam on the brakes and continue only if there was enough
*vel += acc * t_slow; // time in the frame to get down to max
if (delta_t <= t_slow) return dist;
delta_t -= t_slow;
}
if (effective_vel_limit <= 0 || effective_acc_limit <= 0) return dist + *vel * delta_t; // Can't move (from slowdown factor or otherwise)? Also no point in continuing!
float goal_trajectory_speed = fl_sqrt(2.0f * acc_limit * fabsf(goal));
bool should_acc_upwards = goal >= 0 ? *vel < goal_trajectory_speed : *vel < -goal_trajectory_speed;
// This makes sure that the initial acceleration is always positive
// If the goal is above, or if it's below but our vel will put it above us before we can slow down enough, we're good
if (should_acc_upwards) {
if (goal < 0 && force_no_overshoot)
*vel = -goal_trajectory_speed; // With no overshoot our input velocity is always to set to the perfect trajectory
vm_angular_move_1dimension_calc(goal, vel, delta_t, &dist, effective_vel_limit, effective_acc_limit);
}
else { // else flip it so our goal is above and again we get initial positive accel
if (goal > 0 && force_no_overshoot)
*vel = goal_trajectory_speed; // With no overshoot our input velocity is always to set to the perfect trajectory
*vel = -*vel, dist = -dist;
vm_angular_move_1dimension_calc(-goal, vel, delta_t, &dist, effective_vel_limit, effective_acc_limit);
*vel = -*vel, dist = -dist;
}
return dist;
}
float time_to_arrival_calc(float goal, float vel, float vel_limit, float acc_limit) {
float t1 = (vel_limit - vel) / acc_limit; // time to accelerate from the current velocity (possibly negative) to +vel_limit
float apex_t = -vel / acc_limit; // the time when we had / will have velocity zero, assuming acceleration at +acc_limit
float apex = vel * apex_t / 2; // the position we had / will have at the apex
float half_dist = (goal - apex) / 2; // half the distance from apex to goal (where we hit peak velocity)
float t2 = apex_t + fl_sqrt(2 * half_dist / acc_limit); // The time at which we reach half_dist, assuming we never hit vel_limit
float time; // accumulated time to arrival
// If t1 <= t2 then we have a straight segment (cruising at +vel_limit)
if (t1 <= t2) {
float dist = vel * t1 + acc_limit * t1 * t1 / 2; // at the end of the upward bend we are at dist
vel = vel_limit; // and we reach velocity vel_limit
// and the time at the start of the approach is t1 + t_straight
time = t1 + (goal - 0.5f * vel_limit * vel_limit / acc_limit - dist) / vel_limit;
}
else {
// If t2 < t1 then there is no straight segment, we just accelerate until the approach
// so time = t2 and vel is however much we can accelerate in that time
time = t2;
vel += acc_limit * t2;
}
// The total time is the time to the approach + the deceleration time
return time + vel / acc_limit;
}
// called by vm_angular_move to compute a slowing factor
// pared down versions of the 1dimension functions
float time_to_arrival(float goal, float vel, float vel_limit, float acc_limit) {
// We won't consider speeds above our max, the time estimate gets complicated and the result won't be a straight line anyway
if (fabs(vel) > vel_limit) {
vel = vel > 0 ? vel_limit : -vel_limit;
}
return (vel < (goal >= 0 ? fl_sqrt(2.0f * acc_limit * goal) : -fl_sqrt(2.0f * acc_limit * -goal))) // same thing as scalar interpolate
? time_to_arrival_calc(goal, vel, vel_limit, acc_limit)
: time_to_arrival_calc(-goal, -vel, vel_limit, acc_limit);
}
// splits up the accelerating/deccelerating/go to position function for each component
// and also scales their speed to make a nice straight line
// note that this is now treated as a movement in linear space, despite the name
vec3d vm_angular_move(const vec3d* goal, float delta_t,
vec3d* vel, const vec3d* vel_limit, const vec3d* acc_limit, bool no_bank, bool force_no_overshoot, bool no_directional_bias)
{
vec3d ret, slow;
vm_vec_make(&slow, 1.f, 1.f, 1.f);
if (no_directional_bias) {
// first, the estimated time to arrive at the goal angular position is calculated for each component
slow.xyz.x = time_to_arrival(goal->xyz.x, vel->xyz.x, vel_limit->xyz.x, acc_limit->xyz.x);
slow.xyz.y = time_to_arrival(goal->xyz.y, vel->xyz.y, vel_limit->xyz.y, acc_limit->xyz.y);
slow.xyz.z = time_to_arrival(goal->xyz.z, vel->xyz.z, vel_limit->xyz.z, acc_limit->xyz.z);
// then, compute a slowing factor for the 1 or 2 faster-to-arrive-at-their-destination components
// so they arrive at approximately the same time as the slowest component, so the path there is nice and straight
float max = fmax(slow.xyz.x, fmax(slow.xyz.y, slow.xyz.z));
if (max != 0) vm_vec_scale(&slow, 1 / max);
}
ret.xyz.x = vm_angular_move_1dimension(goal->xyz.x, delta_t, &vel->xyz.x, vel_limit->xyz.x, acc_limit->xyz.x, slow.xyz.x, force_no_overshoot);
ret.xyz.y = vm_angular_move_1dimension(goal->xyz.y, delta_t, &vel->xyz.y, vel_limit->xyz.y, acc_limit->xyz.y, slow.xyz.y, force_no_overshoot);
if (!no_bank)
ret.xyz.z = vm_angular_move_1dimension(goal->xyz.z, delta_t, &vel->xyz.z, vel_limit->xyz.z, acc_limit->xyz.z, slow.xyz.z, force_no_overshoot);
return ret;
}
// ---------------------------------------------------------------------------------------------
//
// inputs: goal_orient => goal orientation matrix
// curr_orient => current orientation matrix
// w_in => current input angular velocity
// delta_t => time to move toward goal
// next_orient => the orientation matrix at time delta_t (with current forward vector)
// w_out => the angular velocity of the ship at delta_t
// vel_limit => maximum rotational speed
// acc_limit => maximum rotational acceleration
// no_directional_bias => will cause the angular path generated to be as straight as possible, rather than greedily
// turning at maximum on all axes (and thus possibly produce a 'crooked' path)
// force_no_overshoot => forces the interpolation to not overshoot, if it is approaching its goal too fast
// it will always arrive with 0 velocity, even if its acceleration would not normally
// allow it slow down in time
//
// Asteroth - this replaced retail's "vm_matrix_interpolate" in PR 2668.
// The produced behavior is on average 0.52% slower (std dev 0.74%) than the retail function
// Roughly twice that if framerate_independent_turning is enabled.
//
// The function attempts to rotate the input matrix into the goal matrix taking account of anglular
// momentum (velocity)
void vm_angular_move_matrix(const matrix* goal_orient, const matrix* curr_orient, const vec3d* w_in, float delta_t,
matrix* next_orient, vec3d* w_out, const vec3d* vel_limit, const vec3d* acc_limit, bool no_directional_bias, bool force_no_overshoot)
{
// Find rotation needed for goal
// goal_orient = R curr_orient, so R = goal_orient curr_orient^-1
matrix Mtemp1;
vm_copy_transpose(&Mtemp1, curr_orient); // Mtemp1 = curr ^-1
matrix rot_matrix; // rotation matrix from curr_orient to goal_orient
vm_matrix_x_matrix(&rot_matrix, &Mtemp1, goal_orient); // R = goal * Mtemp1
vm_orthogonalize_matrix(&rot_matrix);
vec3d rot_axis; // vector indicating direction of rotation axis
float theta; // magnitude of rotation about the rotation axis
vm_matrix_to_rot_axis_and_angle(&rot_matrix, &theta, &rot_axis); // determines angle and rotation axis from curr to goal
// find theta to goal
vec3d theta_goal; // desired angular position at the end of the time interval
vm_vec_copy_scale(&theta_goal, &rot_axis, theta);
// continue to interpolate, unless we are at the goal with no velocity, in which case we have arrived
if (theta < SMALL_NUM && vm_vec_mag_squared(w_in) < SMALL_NUM * SMALL_NUM) {
*next_orient = *goal_orient;
vm_vec_zero(w_out);
return;
}
// calculate best approach in linear space (returns velocity in w_out and position difference in rot_axis)
*w_out = *w_in;
rot_axis = vm_angular_move(&theta_goal, delta_t, w_out, vel_limit, acc_limit, false, force_no_overshoot, no_directional_bias);
// arrived at goal? (equality comparison is okay here because vm_vector_interpolate returns theta_goal on arrival)
if (rot_axis == theta_goal) {
*next_orient = *goal_orient;
// rotate velocity out to reflect new local frame
vec3d vtemp = *w_out;
vm_vec_rotate(w_out, &vtemp, &rot_matrix);
return;
}
// normalize rotation axis and determine total rotation angle
theta = vm_vec_mag(&rot_axis);
if (theta > SMALL_NUM)
vm_vec_scale(&rot_axis, 1 / theta);
// if the positional change is small, reuse orient (and return because velocity is already set)
if (theta < SMALL_NUM) {
*next_orient = *curr_orient;
return;
}
// otherwise rotate orient by theta along rot_axis
vm_quaternion_rotate(&Mtemp1, theta, &rot_axis);
Assert(is_valid_matrix(&Mtemp1));
vm_matrix_x_matrix(next_orient, curr_orient, &Mtemp1);
vm_orthogonalize_matrix(next_orient);
// and rotate velocity out to reflect new local frame
vec3d vtemp = *w_out;
vm_vec_rotate(w_out, &vtemp, &Mtemp1);
}
// ---------------------------------------------------------------------------------------------
//
// inputs: goal_f => goal forward vector
// orient => current orientation matrix (with current forward vector)
// w_in => current input angular velocity
// delta_t => this frametime
// bank_vel => desired bank velocity
// next_orient => the orientation matrix at time delta_t (with current forward vector)
// w_out => the angular velocity of the ship at delta_t
// vel_limit => maximum rotational speed
// acc_limit => maximum rotational acceleration
// no_directional_bias => will cause the angular path generated to be as straight as possible, rather than greedily
// turning at maximum on all axes (and thus possibly produce a 'crooked' path)
//
// Asteroth - this replaced retail's "vm_forward_interpolate" in PR 2668.
// The produced behavior is on average 0.06% slower (std dev 0.32%) than the retail function
// Roughly twice that if framerate_independent_turning is enabled, or if the object is a missile.
//
// function attempts to rotate the forward vector toward the goal forward vector taking account of anglular
// momentum (velocity) Attempt to try to move bank by goal delta_bank.
// called "vm_forward_interpolate" in retail
void vm_angular_move_forward_vec(const vec3d* goal_f, const matrix* orient, const vec3d* w_in, float delta_t, float bank_vel,
matrix* next_orient, vec3d* w_out, const vec3d* vel_limit, const vec3d* acc_limit, bool no_directional_bias)
{
vec3d rot_axis;
vm_vec_cross(&rot_axis, &orient->vec.fvec, goal_f); // Get the direction to rotate to the goal
float cos_theta = vm_vec_dot(&orient->vec.fvec, goal_f); // Get cos(theta) where theta is the amount to rotate
float sin_theta = fmin(vm_vec_mag(&rot_axis), 1.0f); // Get sin(theta) (cap at 1 for floating point errors)
vec3d theta_goal = vmd_zero_vector; // theta_goal will contain the radians to rotate (in the same direction as rot_axis but in local coords)
if (sin_theta <= SMALL_NUM) { // sin(theta) is small so we are either very close or very far
if (cos_theta < 0) { // cos(theta) < 0, sin(theta) ~ 0 means we are pointed exactly the opposite way
float w_mag_sq = w_in->xyz.x * w_in->xyz.x + w_in->xyz.y * w_in->xyz.y;
if (w_mag_sq <= SMALL_NUM * SMALL_NUM) { // if we have ~ no angular velocity
theta_goal.xyz.x = PI; // Rotate in x direction (arbitrarily)
}
else { // otherwise prefer to rotate in the direction of angular velocity
float d = PI / fl_sqrt(w_mag_sq);
theta_goal.xyz.x = w_in->xyz.x * d;
theta_goal.xyz.y = w_in->xyz.y * d;
}
}
// continue to interpolate, unless we also have no velocity (and dont need to bank), in which case we have arrived
else if (vm_vec_mag_squared(w_in) < SMALL_NUM * SMALL_NUM && bank_vel == 0.0f) {
*next_orient = *orient;
vm_vec_zero(w_out);
return;
}
}
else {
vec3d local_rot_axis;
// rotate rot_axis into ship reference frame
vm_vec_rotate(&local_rot_axis, &rot_axis, orient);
// derive theta from sin(theta) for better accuracy
vm_vec_copy_scale(&theta_goal, &local_rot_axis, (cos_theta > 0 ? asinf_safe(sin_theta) : PI - asinf_safe(sin_theta)) / sin_theta);
}
// calculate best approach in linear space (returns velocity in w_out and position difference in rot_axis)
*w_out = *w_in;
rot_axis = vm_angular_move(&theta_goal, delta_t, w_out, vel_limit, acc_limit, true, false, no_directional_bias);
// handle bank separately, simpler, since its just a target velocity
{
CLAMP(bank_vel, -vel_limit->xyz.z, vel_limit->xyz.z);
float delta_bank_vel = bank_vel - w_in->xyz.z;
float delta_bank_accel = fl_abs(delta_bank_vel) / delta_t; // the accel required to reach the target vel this frame
float accel = (delta_bank_accel > acc_limit->xyz.z) ? acc_limit->xyz.z : delta_bank_accel;
if (delta_bank_vel < 0)
accel = -accel;
rot_axis.xyz.z = w_in->xyz.z * delta_t + accel * delta_t * delta_t * 0.5f; // vt + 1/2at^2
w_out->xyz.z = w_in->xyz.z + accel * delta_t;
}
// normalize rotation axis and determine total rotation angle
float theta = vm_vec_mag(&rot_axis);
if (theta > SMALL_NUM)
vm_vec_scale(&rot_axis, 1 / theta);
// if the positional change is small, reuse orient (and return because velocity is already set)
if (theta < SMALL_NUM) {
*next_orient = *orient;
return;
}
// otherwise rotate orient by theta along rot_axis
matrix Mtemp1;
vm_quaternion_rotate(&Mtemp1, theta, &rot_axis);
vm_matrix_x_matrix(next_orient, orient, &Mtemp1);
Assert(is_valid_matrix(next_orient));
// and rotate velocity out to reflect new local frame
vec3d vtemp = *w_out;
vm_vec_rotate(w_out, &vtemp, &Mtemp1);
}
// ------------------------------------------------------------------------------------
// vm_find_bounding_sphere()
//
// Calculate a bounding sphere for a set of points.
//
// input: pnts => array of world positions
// num_pnts => number of points inside pnts array
// center => OUTPUT PARAMETER: contains world pos of bounding sphere center
// radius => OUTPUT PARAMETER: continas radius of bounding sphere
//
#define BIGNUMBER 100000000.0f
void vm_find_bounding_sphere(const vec3d *pnts, int num_pnts, vec3d *center, float *radius)
{
int i;
float rad, rad_sq, xspan, yspan, zspan, maxspan;
float old_to_p, old_to_p_sq, old_to_new;
vec3d diff, xmin, xmax, ymin, ymax, zmin, zmax, dia1, dia2;
const vec3d *p;
xmin = vmd_zero_vector;
ymin = vmd_zero_vector;
zmin = vmd_zero_vector;
xmax = vmd_zero_vector;
ymax = vmd_zero_vector;
zmax = vmd_zero_vector;
xmin.xyz.x = ymin.xyz.y = zmin.xyz.z = BIGNUMBER;
xmax.xyz.x = ymax.xyz.y = zmax.xyz.z = -BIGNUMBER;
for ( i = 0; i < num_pnts; i++ ) {
p = &pnts[i];
if ( p->xyz.x < xmin.xyz.x )
xmin = *p;
if ( p->xyz.x > xmax.xyz.x )
xmax = *p;
if ( p->xyz.y < ymin.xyz.y )
ymin = *p;
if ( p->xyz.y > ymax.xyz.y )
ymax = *p;
if ( p->xyz.z < zmin.xyz.z )
zmin = *p;
if ( p->xyz.z > zmax.xyz.z )
zmax = *p;
}
// find distance between two min and max points (squared)
vm_vec_sub(&diff, &xmax, &xmin);
xspan = vm_vec_mag_squared(&diff);
vm_vec_sub(&diff, &ymax, &ymin);
yspan = vm_vec_mag_squared(&diff);
vm_vec_sub(&diff, &zmax, &zmin);
zspan = vm_vec_mag_squared(&diff);
dia1 = xmin;
dia2 = xmax;
maxspan = xspan;
if ( yspan > maxspan ) {
maxspan = yspan;
dia1 = ymin;
dia2 = ymax;
}
if ( zspan > maxspan ) {
maxspan = zspan;
dia1 = zmin;
dia2 = zmax;
}
// calc initial center
vm_vec_add(center, &dia1, &dia2);
vm_vec_scale(center, 0.5f);
vm_vec_sub(&diff, &dia2, center);
rad_sq = vm_vec_mag_squared(&diff);
rad = fl_sqrt(rad_sq);
Assert( !fl_is_nan(rad) );
// second pass
for ( i = 0; i < num_pnts; i++ ) {
p = &pnts[i];
vm_vec_sub(&diff, p, center);
old_to_p_sq = vm_vec_mag_squared(&diff);
if ( old_to_p_sq > rad_sq ) {
old_to_p = fl_sqrt(old_to_p_sq);
// calc radius of new sphere
rad = (rad + old_to_p) / 2.0f;
rad_sq = rad * rad;
old_to_new = old_to_p - rad;
// calc new center of sphere
center->xyz.x = (rad*center->xyz.x + old_to_new*p->xyz.x) / old_to_p;
center->xyz.y = (rad*center->xyz.y + old_to_new*p->xyz.y) / old_to_p;
center->xyz.z = (rad*center->xyz.z + old_to_new*p->xyz.z) / old_to_p;
nprintf(("Alan", "New sphere: cen,rad = %f %f %f %f\n", center->xyz.x, center->xyz.y, center->xyz.z, rad));
}
}
*radius = rad;
}
// ----------------------------------------------------------------------------
// vm_rotate_vec_to_body()
//
// rotates a vector from world coordinates to body coordinates
//
// inputs: body_vec => vector in body coordinates
// world_vec => vector in world coordinates
// orient => orientation matrix
//
vec3d* vm_rotate_vec_to_body(vec3d *body_vec, const vec3d *world_vec, const matrix *orient)
{
return vm_vec_unrotate(body_vec, world_vec, orient);
}
// ----------------------------------------------------------------------------
// vm_rotate_vec_to_world()
//
// rotates a vector from body coordinates to world coordinates
//
// inputs world_vec => vector in world coordinates
// body_vec => vector in body coordinates
// orient => orientation matrix
//
vec3d* vm_rotate_vec_to_world(vec3d *world_vec, const vec3d *body_vec, const matrix *orient)
{
return vm_vec_rotate(world_vec, body_vec, orient);
}
// ----------------------------------------------------------------------------
// vm_estimate_next_orientation()
//
// given a last orientation and current orientation, estimate the next orientation
//
// inputs: last_orient => last orientation matrix
// current_orient => current orientation matrix
// next_orient => next orientation matrix [the result]
//
void vm_estimate_next_orientation(const matrix *last_orient, const matrix *current_orient, matrix *next_orient)
{
// R L = C => R = C (L)^-1
// N = R C => N = C (L)^-1 C
matrix Mtemp;
matrix Rot_matrix;
vm_copy_transpose(&Mtemp, last_orient); // Mtemp = (L)^-1
vm_matrix_x_matrix(&Rot_matrix, &Mtemp, current_orient); // R = C Mtemp1
vm_matrix_x_matrix(next_orient, current_orient, &Rot_matrix);
}
// Return true if all elements of *vec are legal, that is, not NaN or infinity.
bool is_valid_vec(const vec3d *vec)
{
return !std::isnan(vec->xyz.x) && !std::isnan(vec->xyz.y) && !std::isnan(vec->xyz.z)
&& !std::isinf(vec->xyz.x) && !std::isinf(vec->xyz.y) && !std::isinf(vec->xyz.z);
}
// Return true if all elements of *m are legal, that is, not a NAN.
bool is_valid_matrix(const matrix *m)
{
return is_valid_vec(&m->vec.fvec) && is_valid_vec(&m->vec.uvec) && is_valid_vec(&m->vec.rvec);
}
// interpolate between 2 vectors. t goes from 0.0 to 1.0.
void vm_vec_interp_constant(vec3d *out, const vec3d *v0, const vec3d *v1, float t)
{
vec3d cross;
float total_ang;
// get the cross-product of the 2 vectors
vm_vec_cross(&cross, v0, v1);
vm_vec_normalize(&cross);
// get the total angle between the 2 vectors
total_ang = -(acosf_safe(vm_vec_dot(v0, v1)));
// rotate around the cross product vector by the appropriate angle
vm_rot_point_around_line(out, v0, t * total_ang, &vmd_zero_vector, &cross);
}
// randomly perturb a vector around a given (normalized vector) or optional orientation matrix
void vm_vec_random_cone(vec3d *out, const vec3d *in, float max_angle, const matrix *orient)
{
vec3d temp;
const matrix *rot;
matrix m;
// get an orientation matrix
if(orient != NULL){
rot = orient;
} else {
vm_vector_2_matrix(&m, in, NULL, NULL);
rot = &m;
}
// Get properly distributed spherical coordinates (DahBlount)
float z = util::UniformFloatRange(cosf(fl_radians(max_angle)), 1.0f).next(); // Take a 2-sphere slice
float phi = util::UniformFloatRange(0.0f, PI2).next();
vm_vec_make( &temp, sqrtf(1.0f - z*z)*cosf(phi), sqrtf(1.0f - z*z)*sinf(phi), z ); // Using the z-vec as the starting point
vm_vec_unrotate(out, &temp, rot); // We find the final vector by rotating temp to the correct orientation
}
void vm_vec_random_cone(vec3d *out, const vec3d *in, float min_angle, float max_angle, const matrix *orient){
vec3d temp;
const matrix *rot;
matrix m;
if (max_angle < min_angle) {
auto tmp = min_angle;
min_angle = max_angle;
max_angle = tmp;
}
// get an orientation matrix
if(orient != NULL){
rot = orient;
} else {
vm_vector_2_matrix(&m, in, NULL, NULL);
rot = &m;
}
// Get properly distributed spherical coordinates (DahBlount)
// This might not seem intuitive, but the min_angle is the angle that will have a larger z coordinate
float z = util::UniformFloatRange(cosf(fl_radians(max_angle)), cosf(fl_radians(min_angle))).next(); // Take a 2-sphere slice
float phi = util::UniformFloatRange(0.0f, PI2).next();
vm_vec_make( &temp, sqrtf(1.0f - z*z)*cosf(phi), sqrtf(1.0f - z*z)*sinf(phi), z ); // Using the z-vec as the starting point
vm_vec_unrotate(out, &temp, rot); // We find the final vector by rotating temp to the correct orientation
}
// given a start vector, an orientation, and a radius, generate a point on the plane of the circle
// if on_edge is true, the point will be on the edge of the circle
void vm_vec_random_in_circle(vec3d *out, const vec3d *in, const matrix *orient, float radius, bool on_edge, bool bias_towards_center)
{
vec3d temp;
float scalar = frand();
// sqrt because scaling inward increases the probability density by the square of its proximity towards the center
if (!bias_towards_center)
scalar = sqrtf(scalar);
// point somewhere in the plane, maybe scaled inward
vm_vec_scale_add(&temp, in, &orient->vec.rvec, on_edge ? radius : scalar * radius);
// rotate to a random point on the circle
vm_rot_point_around_line(out, &temp, fl_radians(frand_range(0.0f, 360.0f)), in, &orient->vec.fvec);
}
void vm_vec_unit_sphere_point(vec3d *out, float z_scale, float phi_scale)
{
const auto z = (z_scale * 2.0f) - 1.0f; // convert range to [-1,1]
const auto phi = phi_scale * PI2;
const auto rho = sqrtf(1.0f - z * z);
vm_vec_make(out, rho * cosf(phi), rho * sinf(phi), z); // Using the z-vec as the starting point
}
// given a start vector and a radius, generate a point in a spherical volume
// if on_surface is true, the point will be on the surface of the sphere
namespace {
util::UniformFloatRange float_range(0.0f, 1.0f);
}
void vm_vec_random_in_sphere(vec3d *out, const vec3d *in, float radius, bool on_surface, bool bias_towards_center)
{
vec3d temp;
vm_vec_unit_sphere_point(&temp, float_range.next(), float_range.next());
float scalar = 1.0f;
if (!on_surface) {
scalar = float_range.next();
// cube root because scaling inward increases the probability density by the cube of its proximity towards the center
if (!bias_towards_center)
scalar = powf(scalar, 0.333f);
}
vm_vec_scale_add(out, in, &temp, scalar * radius);
}
// find the nearest point on the line to p. if dist is non-NULL, it is filled in
// returns 0 if the point is inside the line segment, -1 if "before" the line segment and 1 ir "after" the line segment
int vm_vec_dist_to_line(const vec3d *p, const vec3d *l0, const vec3d *l1, vec3d *nearest, float *dist)
{
vec3d a, b, c;
float b_mag, comp;
#ifndef NDEBUG
if(vm_vec_same(l0, l1)){
*nearest = vmd_zero_vector;
return -1;
}
#endif
// compb_a == a dot b / len(b)
vm_vec_sub(&a, p, l0);
vm_vec_sub(&b, l1, l0);
b_mag = vm_vec_copy_normalize(&c, &b);
// calculate component
comp = vm_vec_dot(&a, &b) / b_mag;
// stuff nearest
vm_vec_scale_add(nearest, l0, &c, comp);
// maybe get the distance
if(dist != NULL){
*dist = vm_vec_dist(nearest, p);
}
// return the proper value
if(comp < 0.0f){
return -1; // before the line
} else if(comp > b_mag){
return 1; // after the line
}
return 0; // on the line
}
// Goober5000
// Finds the distance squared to a line. Same as above, except it uses vm_vec_dist_squared, which is faster;
// and it doesn't check whether the nearest point is on the line segment.
void vm_vec_dist_squared_to_line(const vec3d *p, const vec3d *l0, const vec3d *l1, vec3d *nearest, float *dist_squared)
{
vec3d a, b, c;
float b_mag, comp;
#ifndef NDEBUG
if(vm_vec_same(l0, l1)){
*nearest = vmd_zero_vector;
return;
}
#endif
// compb_a == a dot b / len(b)
vm_vec_sub(&a, p, l0);
vm_vec_sub(&b, l1, l0);
b_mag = vm_vec_copy_normalize(&c, &b);
// calculate component
comp = vm_vec_dot(&a, &b) / b_mag;
// stuff nearest
vm_vec_scale_add(nearest, l0, &c, comp);
// get the distance
*dist_squared = vm_vec_dist_squared(nearest, p);
}
//SUSHI: 2D vector "box" scaling
//Scales the vector in-place so that the longest dimension = scale
void vm_vec_boxscale(vec2d *vec, float /*scale*/)
{
float ratio = 1.0f / MAX(fl_abs(vec->x), fl_abs(vec->y));
vec->x *= ratio;
vec->y *= ratio;
}
// adds two matrices, fills in dest, returns ptr to dest
// ok for dest to equal either source, but should use vm_matrix_add2() if so
// dest = src0 + src1
void vm_matrix_add(matrix* dest, const matrix* src0, const matrix* src1)
{
dest->vec.fvec = src0->vec.fvec + src1->vec.fvec;
dest->vec.rvec = src0->vec.rvec + src1->vec.rvec;
dest->vec.uvec = src0->vec.uvec + src1->vec.uvec;
}
// subs two matrices, fills in dest, returns ptr to dest
// ok for dest to equal either source, but should use vm_matrix_sub2() if so
// dest = src0 - src1
void vm_matrix_sub(matrix* dest, const matrix* src0, const matrix* src1)
{
dest->vec.fvec = src0->vec.fvec - src1->vec.fvec;
dest->vec.rvec = src0->vec.rvec - src1->vec.rvec;
dest->vec.uvec = src0->vec.uvec - src1->vec.uvec;
}
// adds one matrix to another.
// dest can equal source
// dest += src
void vm_matrix_add2(matrix* dest, const matrix* src)
{
dest->vec.fvec += src->vec.fvec;
dest->vec.rvec += src->vec.rvec;
dest->vec.uvec += src->vec.uvec;
}
// subs one matrix from another, returns ptr to dest
// dest can equal source
// dest -= src
void vm_matrix_sub2(matrix* dest, const matrix* src)
{
dest->vec.fvec -= src->vec.fvec;
dest->vec.rvec -= src->vec.rvec;
dest->vec.uvec -= src->vec.uvec;
}
// TODO Remove this function if we ever move to a math library like glm
/**
* @brief Attempts to invert a 3x3 matrix
* @param[inout] dest The inverted matrix, or 0 if inversion is impossible
* @param[in] m Pointer to the matrix we want to invert
*
* @returns Whether or not the matrix is invertible
*/
bool vm_inverse_matrix(matrix* dest, const matrix* m)
{
// Use doubles here because this is used for ship inv_mois and we could be dealing with extremely small numbers
double inv[3][3]; // create a temp matrix so we can avoid getting a determinant that is 0
// Use a2d so it's easier for people to read
inv[0][0] = -(double)m->a2d[1][2] * (double)m->a2d[2][1] + (double)m->a2d[1][1] * (double)m->a2d[2][2];
inv[0][1] = (double)m->a2d[0][2] * (double)m->a2d[2][1] - (double)m->a2d[0][1] * (double)m->a2d[2][2];
inv[0][2] = -(double)m->a2d[0][2] * (double)m->a2d[1][1] + (double)m->a2d[0][1] * (double)m->a2d[1][2];
inv[1][0] = (double)m->a2d[1][2] * (double)m->a2d[2][0] - (double)m->a2d[1][0] * (double)m->a2d[2][2];
inv[1][1] = -(double)m->a2d[0][2] * (double)m->a2d[2][0] + (double)m->a2d[0][0] * (double)m->a2d[2][2];
inv[1][2] = (double)m->a2d[0][2] * (double)m->a2d[1][0] - (double)m->a2d[0][0] * (double)m->a2d[1][2];
inv[2][0] = -(double)m->a2d[1][1] * (double)m->a2d[2][0] + (double)m->a2d[1][0] * (double)m->a2d[2][1];
inv[2][1] = (double)m->a2d[0][1] * (double)m->a2d[2][0] - (double)m->a2d[0][0] * (double)m->a2d[2][1];
inv[2][2] = -(double)m->a2d[0][1] * (double)m->a2d[1][0] + (double)m->a2d[0][0] * (double)m->a2d[1][1];
double det = (double)m->a2d[0][0] * inv[0][0] + (double)m->a2d[0][1] * inv[1][0] + (double)m->a2d[0][2] * inv[2][0];
if (det == 0) {
*dest = vmd_zero_matrix;
return false;
}
det = 1.0f / det;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
dest->a2d[i][j] = (float)(inv[i][j] * det);
}
}
return true;
}
// TODO Remove this function if we ever move to a math library like glm
/**
* @brief Attempts to invert a 4x4 matrix
* @param[inout] dest The inverted matrix, or 0 if inversion is impossible
* @param[in] m Pointer to the matrix we want to invert
*
* @returns Whether or not the matrix is invertible
*/
bool vm_inverse_matrix4(matrix4* dest, const matrix4* m)
{
matrix4 inv; // create a temp matrix so we can avoid getting a determinant that is 0
// Use a2d so it's easier for people to read
inv.a2d[0][0] = m->a2d[1][1] * m->a2d[2][2] * m->a2d[3][3] -
m->a2d[1][1] * m->a2d[2][3] * m->a2d[3][2] -
m->a2d[2][1] * m->a2d[1][2] * m->a2d[3][3] +
m->a2d[2][1] * m->a2d[1][3] * m->a2d[3][2] +
m->a2d[3][1] * m->a2d[1][2] * m->a2d[2][3] -
m->a2d[3][1] * m->a2d[1][3] * m->a2d[2][2];
inv.a2d[1][0] = -m->a2d[1][0] * m->a2d[2][2] * m->a2d[3][3] +
m->a2d[1][0] * m->a2d[2][3] * m->a2d[3][2] +
m->a2d[2][0] * m->a2d[1][2] * m->a2d[3][3] -
m->a2d[2][0] * m->a2d[1][3] * m->a2d[3][2] -
m->a2d[3][0] * m->a2d[1][2] * m->a2d[2][3] +
m->a2d[3][0] * m->a2d[1][3] * m->a2d[2][2];
inv.a2d[2][0] = m->a2d[1][0] * m->a2d[2][1] * m->a2d[3][3] -
m->a2d[1][0] * m->a2d[2][3] * m->a2d[3][1] -
m->a2d[2][0] * m->a2d[1][1] * m->a2d[3][3] +
m->a2d[2][0] * m->a2d[1][3] * m->a2d[3][1] +
m->a2d[3][0] * m->a2d[1][1] * m->a2d[2][3] -
m->a2d[3][0] * m->a2d[1][3] * m->a2d[2][1];
inv.a2d[3][0] = -m->a2d[1][0] * m->a2d[2][1] * m->a2d[3][2] +
m->a2d[1][0] * m->a2d[2][2] * m->a2d[3][1] +
m->a2d[2][0] * m->a2d[1][1] * m->a2d[3][2] -
m->a2d[2][0] * m->a2d[1][2] * m->a2d[3][1] -
m->a2d[3][0] * m->a2d[1][1] * m->a2d[2][2] +
m->a2d[3][0] * m->a2d[1][2] * m->a2d[2][1];
inv.a2d[0][1] = -m->a2d[0][1] * m->a2d[2][2] * m->a2d[3][3] +
m->a2d[0][1] * m->a2d[2][3] * m->a2d[3][2] +
m->a2d[2][1] * m->a2d[0][2] * m->a2d[3][3] -
m->a2d[2][1] * m->a2d[0][3] * m->a2d[3][2] -
m->a2d[3][1] * m->a2d[0][2] * m->a2d[2][3] +
m->a2d[3][1] * m->a2d[0][3] * m->a2d[2][2];
inv.a2d[1][1] = m->a2d[0][0] * m->a2d[2][2] * m->a2d[3][3] -
m->a2d[0][0] * m->a2d[2][3] * m->a2d[3][2] -
m->a2d[2][0] * m->a2d[0][2] * m->a2d[3][3] +
m->a2d[2][0] * m->a2d[0][3] * m->a2d[3][2] +
m->a2d[3][0] * m->a2d[0][2] * m->a2d[2][3] -
m->a2d[3][0] * m->a2d[0][3] * m->a2d[2][2];
inv.a2d[2][1] = -m->a2d[0][0] * m->a2d[2][1] * m->a2d[3][3] +
m->a2d[0][0] * m->a2d[2][3] * m->a2d[3][1] +
m->a2d[2][0] * m->a2d[0][1] * m->a2d[3][3] -
m->a2d[2][0] * m->a2d[0][3] * m->a2d[3][1] -
m->a2d[3][0] * m->a2d[0][1] * m->a2d[2][3] +
m->a2d[3][0] * m->a2d[0][3] * m->a2d[2][1];
inv.a2d[3][1] = m->a2d[0][0] * m->a2d[2][1] * m->a2d[3][2] -
m->a2d[0][0] * m->a2d[2][2] * m->a2d[3][1] -
m->a2d[2][0] * m->a2d[0][1] * m->a2d[3][2] +
m->a2d[2][0] * m->a2d[0][2] * m->a2d[3][1] +
m->a2d[3][0] * m->a2d[0][1] * m->a2d[2][2] -
m->a2d[3][0] * m->a2d[0][2] * m->a2d[2][1];
inv.a2d[0][2] = m->a2d[0][1] * m->a2d[1][2] * m->a2d[3][3] -
m->a2d[0][1] * m->a2d[1][3] * m->a2d[3][2] -
m->a2d[1][1] * m->a2d[0][2] * m->a2d[3][3] +
m->a2d[1][1] * m->a2d[0][3] * m->a2d[3][2] +
m->a2d[3][1] * m->a2d[0][2] * m->a2d[1][3] -
m->a2d[3][1] * m->a2d[0][3] * m->a2d[1][2];
inv.a2d[1][2] = -m->a2d[0][0] * m->a2d[1][2] * m->a2d[3][3] +
m->a2d[0][0] * m->a2d[1][3] * m->a2d[3][2] +
m->a2d[1][0] * m->a2d[0][2] * m->a2d[3][3] -
m->a2d[1][0] * m->a2d[0][3] * m->a2d[3][2] -
m->a2d[3][0] * m->a2d[0][2] * m->a2d[1][3] +
m->a2d[3][0] * m->a2d[0][3] * m->a2d[1][2];
inv.a2d[2][2] = m->a2d[0][0] * m->a2d[1][1] * m->a2d[3][3] -
m->a2d[0][0] * m->a2d[1][3] * m->a2d[3][1] -
m->a2d[1][0] * m->a2d[0][1] * m->a2d[3][3] +
m->a2d[1][0] * m->a2d[0][3] * m->a2d[3][1] +
m->a2d[3][0] * m->a2d[0][1] * m->a2d[1][3] -
m->a2d[3][0] * m->a2d[0][3] * m->a2d[1][1];
inv.a2d[3][2] = -m->a2d[0][0] * m->a2d[1][1] * m->a2d[3][2] +
m->a2d[0][0] * m->a2d[1][2] * m->a2d[3][1] +
m->a2d[1][0] * m->a2d[0][1] * m->a2d[3][2] -
m->a2d[1][0] * m->a2d[0][2] * m->a2d[3][1] -
m->a2d[3][0] * m->a2d[0][1] * m->a2d[1][2] +
m->a2d[3][0] * m->a2d[0][2] * m->a2d[1][1];
inv.a2d[0][3] = -m->a2d[0][1] * m->a2d[1][2] * m->a2d[2][3] +
m->a2d[0][1] * m->a2d[1][3] * m->a2d[2][2] +
m->a2d[1][1] * m->a2d[0][2] * m->a2d[2][3] -
m->a2d[1][1] * m->a2d[0][3] * m->a2d[2][2] -
m->a2d[2][1] * m->a2d[0][2] * m->a2d[1][3] +
m->a2d[2][1] * m->a2d[0][3] * m->a2d[1][2];
inv.a2d[1][3] = m->a2d[0][0] * m->a2d[1][2] * m->a2d[2][3] -
m->a2d[0][0] * m->a2d[1][3] * m->a2d[2][2] -
m->a2d[1][0] * m->a2d[0][2] * m->a2d[2][3] +
m->a2d[1][0] * m->a2d[0][3] * m->a2d[2][2] +
m->a2d[2][0] * m->a2d[0][2] * m->a2d[1][3] -
m->a2d[2][0] * m->a2d[0][3] * m->a2d[1][2];
inv.a2d[2][3] = -m->a2d[0][0] * m->a2d[1][1] * m->a2d[2][3] +
m->a2d[0][0] * m->a2d[1][3] * m->a2d[2][1] +
m->a2d[1][0] * m->a2d[0][1] * m->a2d[2][3] -
m->a2d[1][0] * m->a2d[0][3] * m->a2d[2][1] -
m->a2d[2][0] * m->a2d[0][1] * m->a2d[1][3] +
m->a2d[2][0] * m->a2d[0][3] * m->a2d[1][1];
inv.a2d[3][3] = m->a2d[0][0] * m->a2d[1][1] * m->a2d[2][2] -
m->a2d[0][0] * m->a2d[1][2] * m->a2d[2][1] -
m->a2d[1][0] * m->a2d[0][1] * m->a2d[2][2] +
m->a2d[1][0] * m->a2d[0][2] * m->a2d[2][1] +
m->a2d[2][0] * m->a2d[0][1] * m->a2d[1][2] -
m->a2d[2][0] * m->a2d[0][2] * m->a2d[1][1];
float det = m->a2d[0][0] * inv.a2d[0][0] + m->a2d[0][1] * inv.a2d[1][0] + m->a2d[0][2] * inv.a2d[2][0] + m->a2d[0][3] * inv.a2d[3][0];
if (det == 0) {
*dest = vmd_zero_matrix4;
return false;
}
det = 1.0f / det;
for (int i = 0; i < 16; i++) {
dest->a1d[i] = inv.a1d[i] * det;
}
return true;
}
void vm_matrix4_set_orthographic(matrix4* out, vec3d *max, vec3d *min)
{
memset(out, 0, sizeof(matrix4));
out->a1d[0] = 2.0f / (max->xyz.x - min->xyz.x);
out->a1d[5] = 2.0f / (max->xyz.y - min->xyz.y);
out->a1d[10] = -2.0f / (max->xyz.z - min->xyz.z);
out->a1d[12] = -(max->xyz.x + min->xyz.x) / (max->xyz.x - min->xyz.x);
out->a1d[13] = -(max->xyz.y + min->xyz.y) / (max->xyz.y - min->xyz.y);
out->a1d[14] = -(max->xyz.z + min->xyz.z) / (max->xyz.z - min->xyz.z);
out->a1d[15] = 1.0f;
}
void vm_matrix4_set_inverse_transform(matrix4 *out, matrix *m, vec3d *v)
{
// this is basically the same function as the opengl view matrix construction
// except we don't invert the Z-axis
vec3d scaled_pos;
vec3d inv_pos;
matrix inv_orient;
vm_vec_copy_scale(&scaled_pos, v, -1.0f);
vm_copy_transpose(&inv_orient, m);
vm_vec_rotate(&inv_pos, &scaled_pos, m);
vm_matrix4_set_transform(out, &inv_orient, &inv_pos);
}
void vm_matrix4_set_identity(matrix4 *out)
{
out->a2d[0][0] = 1.0f;
out->a2d[0][1] = 0.0f;
out->a2d[0][2] = 0.0f;
out->a2d[0][3] = 0.0f;
out->a2d[1][0] = 0.0f;
out->a2d[1][1] = 1.0f;
out->a2d[1][2] = 0.0f;
out->a2d[1][3] = 0.0f;
out->a2d[2][0] = 0.0f;
out->a2d[2][1] = 0.0f;
out->a2d[2][2] = 1.0f;
out->a2d[2][3] = 0.0f;
out->a2d[3][0] = 0.0f;
out->a2d[3][1] = 0.0f;
out->a2d[3][2] = 0.0f;
out->a2d[3][3] = 1.0f;
}
void vm_matrix4_set_transform(matrix4 *out, matrix *m, vec3d *v)
{
vm_matrix4_set_identity(out);
out->a2d[0][0] = m->a2d[0][0];
out->a2d[0][1] = m->a2d[0][1];
out->a2d[0][2] = m->a2d[0][2];
out->a2d[1][0] = m->a2d[1][0];
out->a2d[1][1] = m->a2d[1][1];
out->a2d[1][2] = m->a2d[1][2];
out->a2d[2][0] = m->a2d[2][0];
out->a2d[2][1] = m->a2d[2][1];
out->a2d[2][2] = m->a2d[2][2];
out->a2d[3][0] = v->a1d[0];
out->a2d[3][1] = v->a1d[1];
out->a2d[3][2] = v->a1d[2];
}
void vm_matrix4_get_orientation(matrix *out, const matrix4 *m)
{
out->a2d[0][0] = m->a2d[0][0];
out->a2d[0][1] = m->a2d[0][1];
out->a2d[0][2] = m->a2d[0][2];
out->a2d[1][0] = m->a2d[1][0];
out->a2d[1][1] = m->a2d[1][1];
out->a2d[1][2] = m->a2d[1][2];
out->a2d[2][0] = m->a2d[2][0];
out->a2d[2][1] = m->a2d[2][1];
out->a2d[2][2] = m->a2d[2][2];
}
void vm_matrix4_get_offset(vec3d *out, const matrix4 *m)
{
out->xyz.x = m->vec.pos.xyzw.x;
out->xyz.y = m->vec.pos.xyzw.y;
out->xyz.z = m->vec.pos.xyzw.z;
}
void vm_matrix4_x_matrix4(matrix4 *dest, const matrix4 *src0, const matrix4 *src1)
{
dest->vec.rvec.xyzw.x = vm_vec4_dot4(src0->vec.rvec.xyzw.x, src0->vec.uvec.xyzw.x, src0->vec.fvec.xyzw.x, src0->vec.pos.xyzw.x, &src1->vec.rvec);
dest->vec.uvec.xyzw.x = vm_vec4_dot4(src0->vec.rvec.xyzw.x, src0->vec.uvec.xyzw.x, src0->vec.fvec.xyzw.x, src0->vec.pos.xyzw.x, &src1->vec.uvec);
dest->vec.fvec.xyzw.x = vm_vec4_dot4(src0->vec.rvec.xyzw.x, src0->vec.uvec.xyzw.x, src0->vec.fvec.xyzw.x, src0->vec.pos.xyzw.x, &src1->vec.fvec);
dest->vec.pos.xyzw.x = vm_vec4_dot4(src0->vec.rvec.xyzw.x, src0->vec.uvec.xyzw.x, src0->vec.fvec.xyzw.x, src0->vec.pos.xyzw.x, &src1->vec.pos);
dest->vec.rvec.xyzw.y = vm_vec4_dot4(src0->vec.rvec.xyzw.y, src0->vec.uvec.xyzw.y, src0->vec.fvec.xyzw.y, src0->vec.pos.xyzw.y, &src1->vec.rvec);
dest->vec.uvec.xyzw.y = vm_vec4_dot4(src0->vec.rvec.xyzw.y, src0->vec.uvec.xyzw.y, src0->vec.fvec.xyzw.y, src0->vec.pos.xyzw.y, &src1->vec.uvec);
dest->vec.fvec.xyzw.y = vm_vec4_dot4(src0->vec.rvec.xyzw.y, src0->vec.uvec.xyzw.y, src0->vec.fvec.xyzw.y, src0->vec.pos.xyzw.y, &src1->vec.fvec);
dest->vec.pos.xyzw.y = vm_vec4_dot4(src0->vec.rvec.xyzw.y, src0->vec.uvec.xyzw.y, src0->vec.fvec.xyzw.y, src0->vec.pos.xyzw.y, &src1->vec.pos);
dest->vec.rvec.xyzw.z = vm_vec4_dot4(src0->vec.rvec.xyzw.z, src0->vec.uvec.xyzw.z, src0->vec.fvec.xyzw.z, src0->vec.pos.xyzw.z, &src1->vec.rvec);
dest->vec.uvec.xyzw.z = vm_vec4_dot4(src0->vec.rvec.xyzw.z, src0->vec.uvec.xyzw.z, src0->vec.fvec.xyzw.z, src0->vec.pos.xyzw.z, &src1->vec.uvec);
dest->vec.fvec.xyzw.z = vm_vec4_dot4(src0->vec.rvec.xyzw.z, src0->vec.uvec.xyzw.z, src0->vec.fvec.xyzw.z, src0->vec.pos.xyzw.z, &src1->vec.fvec);
dest->vec.pos.xyzw.z = vm_vec4_dot4(src0->vec.rvec.xyzw.z, src0->vec.uvec.xyzw.z, src0->vec.fvec.xyzw.z, src0->vec.pos.xyzw.z, &src1->vec.pos);
dest->vec.rvec.xyzw.w = vm_vec4_dot4(src0->vec.rvec.xyzw.w, src0->vec.uvec.xyzw.w, src0->vec.fvec.xyzw.w, src0->vec.pos.xyzw.w, &src1->vec.rvec);
dest->vec.uvec.xyzw.w = vm_vec4_dot4(src0->vec.rvec.xyzw.w, src0->vec.uvec.xyzw.w, src0->vec.fvec.xyzw.w, src0->vec.pos.xyzw.w, &src1->vec.uvec);
dest->vec.fvec.xyzw.w = vm_vec4_dot4(src0->vec.rvec.xyzw.w, src0->vec.uvec.xyzw.w, src0->vec.fvec.xyzw.w, src0->vec.pos.xyzw.w, &src1->vec.fvec);
dest->vec.pos.xyzw.w = vm_vec4_dot4(src0->vec.rvec.xyzw.w, src0->vec.uvec.xyzw.w, src0->vec.fvec.xyzw.w, src0->vec.pos.xyzw.w, &src1->vec.pos);
}
float vm_vec4_dot4(float x, float y, float z, float w, const vec4 *v)
{
return (x * v->xyzw.x) + (y * v->xyzw.y) + (z * v->xyzw.z) + (w * v->xyzw.w);
}
void vm_vec_transform(vec4 *dest, const vec4 *src, const matrix4 *m)
{
dest->xyzw.x = (m->vec.rvec.xyzw.x * src->xyzw.x) + (m->vec.uvec.xyzw.x * src->xyzw.y) + (m->vec.fvec.xyzw.x * src->xyzw.z) + (m->vec.pos.xyzw.x * src->xyzw.w);
dest->xyzw.y = (m->vec.rvec.xyzw.y * src->xyzw.x) + (m->vec.uvec.xyzw.y * src->xyzw.y) + (m->vec.fvec.xyzw.y * src->xyzw.z) + (m->vec.pos.xyzw.y * src->xyzw.w);
dest->xyzw.z = (m->vec.rvec.xyzw.z * src->xyzw.x) + (m->vec.uvec.xyzw.z * src->xyzw.y) + (m->vec.fvec.xyzw.z * src->xyzw.z) + (m->vec.pos.xyzw.z * src->xyzw.w);
dest->xyzw.w = (m->vec.rvec.xyzw.w * src->xyzw.x) + (m->vec.uvec.xyzw.w * src->xyzw.y) + (m->vec.fvec.xyzw.w * src->xyzw.z) + (m->vec.pos.xyzw.w * src->xyzw.w);
}
void vm_vec_transform(vec3d *dest, const vec3d *src, const matrix4 *m, bool pos)
{
vec4 temp_src, temp_dest;
temp_src.xyzw.x = src->xyz.x;
temp_src.xyzw.y = src->xyz.y;
temp_src.xyzw.z = src->xyz.z;
// whether to treat vec3d src as a position or a vector.
// 0.0f will prevent matrix4 m's offset from being added. 1.0f will add the offset.
temp_src.xyzw.w = pos ? 1.0f : 0.0f;
vm_vec_transform(&temp_dest, &temp_src, m);
dest->xyz.x = temp_dest.xyzw.x;
dest->xyz.y = temp_dest.xyzw.y;
dest->xyz.z = temp_dest.xyzw.z;
}
vec3d vm_vec4_to_vec3(const vec4& vec) {
vec3d out;
out.xyz.x = vec.xyzw.x;
out.xyz.y = vec.xyzw.y;
out.xyz.z = vec.xyzw.z;
return out;
}
vec4 vm_vec3_to_ve4(const vec3d& vec, float w) {
vec4 out;
out.xyzw.x = vec.xyz.x;
out.xyzw.y = vec.xyz.y;
out.xyzw.z = vec.xyz.z;
out.xyzw.w = w;
return out;
}
// This function is used when we want to "match orientation" to a target, here match_orient,
// while still pointing our forward vector in a certain direction, here goal_fvec.
// out_rvec is the best matching right vector to match_orient.rvec
void vm_match_bank(vec3d* out_rvec, const vec3d* goal_fvec, const matrix* match_orient) {
// We want to calculate out_rvec as a frame transformation, translating match_orient.rvec
// from source_frame to dest_frame.
//
// We set up the frames such that:
// * source fvec = match_orient.fvec
// * dest fvec = goal_fvec
// * source uvec = dest uvec
// This uniquely determines both frames, and the rvecs go along for the ride.
// Once we have these frames, we just rotate match_orient.rvec from one frame to the other.
// Calculate the source frame. The common uvec has to be perpendicular to match_orient.fvec
// and goal_fvec so we cross to get it. The rvec is left as 0 to be set by vm_orthogonalize_matrix
matrix source_frame = vmd_zero_matrix;
source_frame.vec.fvec = match_orient->vec.fvec;
vm_vec_cross(&source_frame.vec.uvec, &source_frame.vec.fvec, goal_fvec);
vm_orthogonalize_matrix(&source_frame);
// Calculate the destination frame, using goal_fvec and the common uvec.
// These are already orthogonal and normalized so we can just cross to get the rvec rather than
// calling vm_orthogonalize_matrix
matrix dest_frame;
dest_frame.vec.fvec = *goal_fvec;
dest_frame.vec.uvec = source_frame.vec.uvec;
vm_vec_cross(&dest_frame.vec.rvec, &dest_frame.vec.uvec, &dest_frame.vec.fvec);
// Apply the transformation to match_orient.rvec, returning the result in out_rvec
vec3d temp;
vm_vec_rotate(&temp, &match_orient->vec.rvec, &source_frame);
vm_vec_unrotate(out_rvec, &temp, &dest_frame);
}
// Interpolate between two matrices, using t as a percentage progress between them.
// Intended values for t are [0.0f, 1.0f], but values outside this range are allowed,
// as you could conceivably use these calculations to find a rotation that is outside
// the usual 0-100%.
// derived by Asteroth from our AI code
void vm_interpolate_matrices(matrix* out_orient, const matrix* curr_orient, const matrix* goal_orient, float t)
{
// check the case where it doesn't make sense to go through the whole function
if (fl_near_zero(t)) {
*out_orient = *curr_orient;
return;
}
matrix Mtemp1;
vm_copy_transpose(&Mtemp1, curr_orient); // Mtemp1 = curr ^-1
matrix matrix_delta; // rotation matrix from curr_orient to goal_orient
vm_matrix_x_matrix(&matrix_delta, &Mtemp1, goal_orient); // Rot = goal * Mtemp1
vm_orthogonalize_matrix(&matrix_delta);
vec3d rot_axis; // vector indicating direction of rotation axis
float theta; // magnitude of rotation about the rotation axis
vm_matrix_to_rot_axis_and_angle(&matrix_delta, &theta, &rot_axis); // determines angle and rotation axis from curr to goal
// if we had identical or nearly identical matrices, it shows up here as theta being very close to zero.
if (fl_near_zero(theta)) {
// goal orient is a little better here in case theta was close enough to zero
// but the matrices were not actually identical. It won't look like the ship is
// stuck in its old orientation.
*out_orient = *goal_orient;
return;
}
matrix rot_matrix;
vm_quaternion_rotate(&rot_matrix, t * theta, &rot_axis); // get the matrix that rotates current to our interpolated matrix
vm_matrix_x_matrix(out_orient, &rot_matrix, curr_orient); // do the final rotation
}
std::ostream& operator<<(std::ostream& os, const vec3d& vec)
{
os << "vec3d<" << vec.xyz.x << ", " << vec.xyz.y << ", " << vec.xyz.z << ">";
return os;
}
matrix vm_stretch_matrix(const vec3d* stretch_dir, float stretch) {
matrix outer_prod;
vm_vec_outer_product(&outer_prod, stretch_dir);
for (float& i : outer_prod.a1d)
i *= stretch - 1.f;
return vmd_identity_matrix + outer_prod;
}
// generates a well distributed quasi-random position in a -1 to 1 cube
// the caller must provide and increment the seed for each call for proper results
// algorithm taken from http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
const float phi3 = 1.220744084f;
vec3d vm_well_distributed_rand_vec(int seed, vec3d* offset) {
vec3d out;
if (offset != nullptr) {
out.xyz.x = fmod(-fmod(offset->xyz.x, 1.f) + ((1.f / phi3) * seed), 1.f) * 2 - 1;
out.xyz.y = fmod(-fmod(offset->xyz.y, 1.f) + ((1.f / (phi3 * phi3)) * seed), 1.f) * 2 - 1;
out.xyz.z = fmod(-fmod(offset->xyz.z, 1.f) + ((1.f / (phi3 * phi3 * phi3)) * seed), 1.f) * 2 - 1;
}
else {
out.xyz.x = fmod((1.f / phi3) * seed, 1.f) * 2 - 1;
out.xyz.y = fmod((1.f / (phi3 * phi3)) * seed, 1.f) * 2 - 1;
out.xyz.z = fmod((1.f / (phi3 * phi3 * phi3)) * seed, 1.f) * 2 - 1;
}
return out;
}
|