1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
|
#pragma once
#include "utils/RandomRange.h"
#include "math/curve.h"
#include "parse/encrypt.h"
#include "globalincs/type_traits.h"
#include "parse/parsehi.h"
#include <optional>
#include <type_traits>
#include <utility>
//
// Modular Curve Input Grabbers
//
// These structs help at building accessors to potential inputs for modular curve definitions
// modular_curves_submember_input -> provides a fully inlineable and compiletime-defined way to access class members, members-of-members, and index into global arrays
// modular_curves_functional_input -> provides an interface for grabbing floats from arbitrary functions. Not as well optimizable as the above, and not declarable inline (until C++20)
//
template<auto... grabbers>
struct modular_curves_submember_input {
protected:
template<typename input_type, auto grabber>
static inline auto grab_part(const input_type& input) {
//Pointer to member function
if constexpr (std::is_member_function_pointer_v<decltype(grabber)>) {
if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>>)
return ((*input).*grabber)();
else
return (input.*grabber)();
}
//Pointer to member type, i.e. for submember access
else if constexpr (std::is_member_object_pointer_v<decltype(grabber)>) {
if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>>)
return std::cref(input->*grabber);
else
return std::cref(input.*grabber);
}
//Pointer to static variable, i.e. used to index into things.
else if constexpr (std::is_pointer_v<decltype(grabber)>) {
if constexpr (std::is_invocable_v<decltype(grabber), decltype(input)>) {
//Global func by ref
return grabber(input);
}
else if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>> && std::is_invocable_v<decltype(grabber), std::remove_pointer_t<std::decay_t<decltype(input)>>>) {
//Global func by ref from ptr
return grabber(*input);
}
else if constexpr (std::is_invocable_v<decltype(grabber), decltype(&input)>) {
//Global func by ptr
return grabber(&input);
}
else {
static_assert(std::is_integral_v<std::remove_cv_t<std::remove_reference_t<input_type>>>, "Can only index into array from an integral input");
using indexing_type = std::decay_t<decltype((*grabber)[input])>;
if (input >= 0)
return std::optional<std::reference_wrapper<const indexing_type>>{std::cref((*grabber)[input])};
else
return std::optional<std::reference_wrapper<const indexing_type>>(std::nullopt);
}
}
//Integer, used to index into tuples. Should be rarely used by actual users, but is required to do child-types.
else if constexpr (std::is_integral_v<decltype(grabber)>) {
if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>>)
return std::cref(std::get<grabber>(*input));
else
return std::cref(std::get<grabber>(input));
}
else {
static_assert(!std::is_same_v<input_type, input_type>, "Unknown grabber type in modular curves");
}
}
template<typename input_type, auto grabber, auto... other_grabbers>
static inline auto grab_internal(std::reference_wrapper<const input_type> input) {
//If we're down to one grabber only, return it
if constexpr (sizeof...(other_grabbers) == 0){
return grab_part<input_type, grabber>(input.get());
}
//Otherwise, use the current grabber, and forward the result to the next grabber
else {
const auto& current_access = grab_part<input_type, grabber>(input.get());
//If the current grabber isn't guaranteed to succeed, check for completion first
if constexpr (is_optional_v<std::decay_t<decltype(current_access)>>) {
if constexpr (is_instance_of_v<std::decay_t<decltype(*current_access)>, std::reference_wrapper>) {
using lower_return_type = decltype(grab_internal<std::decay_t<decltype((*current_access).get())>, other_grabbers...>(*current_access));
using return_type = typename std::conditional_t<is_optional_v<std::decay_t<lower_return_type>>, lower_return_type, std::optional<lower_return_type>>;
//If we're already nullopt (i.e. this array access failed) return early
if (current_access.has_value()) {
//Now, it's possible that lower acceses _also_ produce optionals. In this case, we need to forward the lower result, not re-wrap it.
if constexpr (is_optional_v<std::decay_t<lower_return_type>>) {
return grab_internal<std::decay_t<decltype((*current_access).get())>, other_grabbers...>(*current_access);
} else {
return return_type(grab_internal<std::decay_t<decltype((*current_access).get())>, other_grabbers...>(*current_access));
}
} else
return return_type(std::nullopt);
}
else {
using lower_return_type = decltype(grab_internal<std::decay_t<decltype(*current_access)>, other_grabbers...>(*current_access));
using return_type = typename std::conditional_t<is_optional_v<std::decay_t<lower_return_type>>, lower_return_type, std::optional<lower_return_type>>;
//If we're already nullopt (i.e. this array access failed) return early
if (current_access.has_value()) {
//Now, it's possible that lower acceses _also_ produce optionals. In this case, we need to forward the lower result, not re-wrap it.
if constexpr (is_optional_v<std::decay_t<lower_return_type>>) {
return grab_internal<std::decay_t<decltype(*current_access)>, other_grabbers...>(*current_access);
} else {
return return_type(grab_internal<std::decay_t<decltype(*current_access)>, other_grabbers...>(*current_access));
}
} else
return return_type(std::nullopt);
}
}
//Otherwise just send it on to the next grabber
else if constexpr (is_instance_of_v<std::decay_t<decltype(current_access)>, std::reference_wrapper>) {
return grab_internal<std::decay_t<decltype(current_access.get())>, other_grabbers...>(current_access.get());
}
else {
return grab_internal<std::decay_t<decltype(current_access)>, other_grabbers...>(current_access);
}
}
}
template<int tuple_idx, typename input_type>
static inline auto grab_from_tuple(const input_type& input) {
if constexpr(tuple_idx < 0)
return std::cref(input);
else
return std::cref(std::get<tuple_idx>(input));
}
template<typename result_type>
static inline float number_to_float(const result_type& number) {
// if constexpr(std::is_same_v<std::decay_t<result_type>, fix>) // TODO: Make sure we can differentiate fixes from ints.
// return f2fl(number);
// else
if constexpr(std::is_integral_v<std::decay_t<result_type>>)
return static_cast<float>(number);
else if constexpr(std::is_floating_point_v<std::decay_t<result_type>>)
return static_cast<float>(number);
else {
static_assert(!std::is_same_v<result_type, result_type>, "Tried to return non-numeric value");
return 0.f;
}
}
public:
template<int tuple_idx, typename input_type>
static inline float grab(const input_type& input) {
const auto& result = grab_internal<std::decay_t<decltype(grab_from_tuple<tuple_idx, input_type>(input).get())>, grabbers...>(grab_from_tuple<tuple_idx, input_type>(input));
if constexpr (is_optional_v<typename std::decay_t<decltype(result)>>) {
if (result.has_value()) {
if constexpr (is_instance_of_v<std::decay_t<decltype(*result)>, std::reference_wrapper>)
return number_to_float(result->get());
else
return number_to_float(*result);
}
else
return 1.0f;
}
else if constexpr (is_instance_of_v<std::decay_t<decltype(result)>, std::reference_wrapper>) {
//We could also be returned not a temporary optional from a check, but a true optional stored somewhere, so check for this here
if constexpr (is_optional_v<typename std::decay_t<typename std::decay_t<decltype(result)>::type>>) {
const auto& inner_result = result.get();
if (inner_result.has_value())
return number_to_float(*inner_result);
else
return 1.0f;
}
else
return number_to_float(result.get());
}
else {
return number_to_float(result);
}
}
};
//Allows submember grabbers on full inputs by using a reducer-function.
//Mostly useful for submember-like access if you need to combine multiple input components to get the value
template<auto reducer, auto... grabbers>
struct modular_curves_submember_input_full : public modular_curves_submember_input<grabbers...> {
public:
template<int /*tuple_idx*/, typename input_type>
static inline float grab(const input_type& input) {
const auto& reduced = reducer(input);
const auto& result = modular_curves_submember_input<grabbers...>::template grab_internal<std::decay_t<decltype(reduced)>, grabbers...>(reduced);
if constexpr (is_optional_v<typename std::decay_t<decltype(result)>>) {
if (result.has_value())
return modular_curves_submember_input<grabbers...>::number_to_float(result->get());
else
return 1.0f;
}
else if constexpr (is_instance_of_v<std::decay_t<decltype(result)>, std::reference_wrapper>) {
//We could also be returned not a temporary optional from a check, but a true optional stored somewhere, so check for this here
if constexpr (is_optional_v<typename std::decay_t<typename std::decay_t<decltype(result)>::type>>) {
const auto& inner_result = result.get();
if (inner_result.has_value())
return modular_curves_submember_input<grabbers...>::number_to_float(*inner_result);
else
return 1.0f;
}
else
return modular_curves_submember_input<grabbers...>::number_to_float(result.get());
}
else {
return modular_curves_submember_input<grabbers...>::number_to_float(result);
}
}
};
template<const auto& global, auto... grabbers>
struct modular_curves_global_submember_input {
protected:
template<typename result_type>
static inline float number_to_float(const result_type& number) {
// if constexpr(std::is_same_v<std::decay_t<result_type>, fix>) // TODO: Make sure we can differentiate fixes from ints.
// return f2fl(number);
// else
if constexpr(std::is_integral_v<std::decay_t<result_type>>)
return static_cast<float>(number);
else if constexpr(std::is_floating_point_v<std::decay_t<result_type>>)
return static_cast<float>(number);
else {
static_assert(!std::is_same_v<result_type, result_type>, "Tried to return non-numeric value");
return 0.f;
}
}
public:
template<int /*tuple_idx*/, typename input_type>
static inline float grab(const input_type& /*input*/) {
if constexpr (sizeof...(grabbers) == 0) {
if constexpr (std::is_invocable_v<std::decay_t<decltype(global)>>) {
return number_to_float(global());
} else {
return number_to_float(global);
}
}
else {
if constexpr (std::is_invocable_v<std::decay_t<decltype(global)>>) {
return modular_curves_submember_input<grabbers...>::template grab<-1, decltype(global())>(global());
} else {
return modular_curves_submember_input<grabbers...>::template grab<-1, std::decay_t<decltype(global)>>(global);
}
}
}
};
template<auto grabber_fnc>
struct modular_curves_functional_input { private:
template<int tuple_idx, typename input_type>
static inline auto grab_from_tuple(const input_type& input) {
if constexpr(tuple_idx < 0)
return std::cref(input);
else
return std::cref(std::get<tuple_idx>(input));
}
public:
template<int tuple_idx, typename input_type>
static inline float grab(const input_type& input) {
if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>>){
return grabber_fnc(*grab_from_tuple<tuple_idx, input_type>(input));
}
else {
return grabber_fnc(grab_from_tuple<tuple_idx, input_type>(input));
}
}
};
template<auto grabber_fnc>
struct modular_curves_functional_full_input {
private:
template<typename input_type, int... tuple_idx>
static inline auto grab_from_tuple_vararg(const input_type& input, std::integer_sequence<int, tuple_idx...>) {
return std::forward_as_tuple(std::get<tuple_idx>(input)...);
}
template<int tuple_idx, typename input_type>
static inline auto grab_from_tuple(const input_type& input) {
if constexpr(tuple_idx < 0)
return std::cref(input);
else
return grab_from_tuple_vararg<input_type>(input, std::make_integer_sequence<int, tuple_idx + 1>{});
}
public:
template<int tuple_idx, typename input_type>
static inline float grab(const input_type& input) {
return grabber_fnc(grab_from_tuple<tuple_idx, input_type>(input));
}
};
enum class ModularCurvesMathOperators {
addition,
subtraction,
multiplication,
division
};
template <typename first, typename second, auto operation>
struct modular_curves_math_input {
public:
template <int tuple_idx, typename input_type>
static inline float grab(const input_type& input) {
float first_value = first::template grab<tuple_idx, input_type>(input);
float second_value = second::template grab<tuple_idx, input_type>(input);
static_assert(std::is_same_v<decltype(operation), ModularCurvesMathOperators>, "Operation type must be in ModularCurvesMathOperators!");
if constexpr (operation == ModularCurvesMathOperators::addition) {
return first_value + second_value;
} else if constexpr (operation == ModularCurvesMathOperators::subtraction) {
return first_value - second_value;
} else if constexpr (operation == ModularCurvesMathOperators::multiplication) {
return first_value * second_value;
} else if constexpr (operation == ModularCurvesMathOperators::division) {
if (second_value != 0.f)
return first_value / second_value;
else
return 1.f;
} else {
static_assert(!std::is_same_v<first, first>, "Unknown operation type");
return 0.f;
}
}
};
struct modular_curves_self_input {
private:
template<int tuple_idx, typename input_type>
static inline auto grab_from_tuple(const input_type& input) {
if constexpr(tuple_idx < 0)
return input;
else
return std::get<tuple_idx>(input);
}
public:
template<int tuple_idx, typename input_type>
static inline float grab(const input_type& input) {
if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>>){
return *grab_from_tuple<tuple_idx, input_type>(input);
}
else {
return grab_from_tuple<tuple_idx, input_type>(input);
}
}
};
//
// Non-template modular curve helper structs, carrying per-curve data as well as data per-instance affected by modular curves.
//
// Do not instantiate this manually. The modular_curve_set struct will manage every use of this struct for you automatically.
struct modular_curves_entry {
int curve_idx = -1;
::util::ParsedRandomFloatRange scaling_factor = ::util::UniformFloatRange(1.f);
::util::ParsedRandomFloatRange translation = ::util::UniformFloatRange(0.f);
bool wraparound = false;
};
//
// This modular_curves_entry_instance contains data for any instances affected by modular curves.
// On the example of Weapon Curves, each weapon instance would have one modular_curves_entry_instance.
// Do not instance this struct manually, instead use modular_curves_set::create_instance()
//
struct modular_curves_entry_instance {
int seed_scaling_factor;
int seed_translation;
};
// Forward declaration of modular_curves_set, see explanation below
template<const auto& definitions, typename input_type, typename output_enum, typename input_tuple_index, typename... input_grabbers>
struct modular_curves_set;
//
// The modular_curves_definition contains the definition of one type of modular curves.
// I.e., something like "Weapon Curves" should have ONE global constexpr instance of a modular_curves_definition struct.
// It is in fact required that this instance is constexpr to be able to instance sets from it.
// Do not instance this by hand, but use the make_modular_curve_definition helper template function,
// or modular_curves_definition::derive_modular_curves_subset for derived defitions.
// output_enum must be a contiguous enum with a NUM_VALUES end
//
template<typename input_type, typename output_enum, size_t output_names, typename input_tuple_index, typename... input_grabbers>
struct modular_curves_definition {
private:
// Friends for instantiation and access from the set.
template<typename, typename, size_t, typename, typename...>
friend struct modular_curves_definition;
template<const auto&, typename, typename, typename, typename...>
friend struct modular_curves_set;
template<const auto&>
friend inline auto make_modular_curve_set();
template<typename, typename output_enum_, size_t output_names_, typename... input_grabbers_>
friend constexpr auto make_modular_curve_definition(std::array<std::pair<const char*, output_enum_>, output_names_> outputs, std::pair<const char*, input_grabbers_>... inputs);
// Internal data
using this_definition_type = modular_curves_definition<input_type, output_enum, output_names, input_tuple_index, input_grabbers...>;
static constexpr size_t num_outputs = static_cast<size_t>(output_enum::NUM_VALUES);
std::array<std::pair<const char*, output_enum>, output_names> outputs;
std::tuple<std::pair<const char*, input_grabbers>...> inputs;
// Constructors and creation helpers
constexpr modular_curves_definition(std::array<std::pair<const char*, output_enum>, output_names> outputs_, std::tuple<std::pair<const char*, input_grabbers>...> inputs_) : outputs(std::move(outputs_)), inputs(std::move(inputs_)) {}
template<const this_definition_type& curve_definition>
static inline auto make_modular_curve_set() {
return modular_curves_set<curve_definition, input_type, output_enum, input_tuple_index, input_grabbers...>{};
}
//Helper function to for parsing
template<bool parsing, size_t... idx>
inline size_t get_input_idx_by_name(const char* input, std::index_sequence<idx...>) const {
size_t result = 0;
bool matched_case = ((!stricmp(input, std::get<idx>(inputs).first) ? (result = idx), true : false) || ...);
if (!matched_case) {
if constexpr (parsing)
error_display(1, "Unexpected modular curve input %s!", input);
else
UNREACHABLE("Unexpected modular curve input %s!", input);
}
return result;
}
// Parsing
void parse(std::array<SCP_vector<std::pair<size_t, modular_curves_entry>>, num_outputs>& curves, const SCP_string& curve_type) const {
while(optional_string(curve_type.c_str())) {
SCP_string input;
required_string("+Input:");
stuff_string(input, F_NAME);
size_t input_idx = get_input_idx_by_name<true>(input.c_str(), std::index_sequence_for<input_grabbers...>{});
SCP_string output;
required_string("+Output:");
stuff_string(output, F_NAME);
bool found_output = false;
auto output_idx = static_cast<output_enum>(0);
for (const auto& output_pair : outputs){
if (!stricmp(output_pair.first, output.c_str())){
found_output = true;
output_idx = output_pair.second;
break;
}
}
if (!found_output){
error_display(1, "Unexpected modular curve output %s!", output.c_str());
}
modular_curves_entry curve_entry;
required_string_either("+Curve Name:", "+Curve:", true);
curve_entry.curve_idx = curve_parse(" Unknown curve requested for modular curves!");
if (curve_entry.curve_idx < 0){
error_display(1, "Unknown curve requested for modular curves!");
}
if (optional_string("+Random Scaling Factor:")) {
curve_entry.scaling_factor = ::util::ParsedRandomFloatRange::parseRandomRange();
} else {
curve_entry.scaling_factor = ::util::UniformFloatRange(1.0f);
}
if (optional_string("+Random Translation:")) {
curve_entry.translation = ::util::ParsedRandomFloatRange::parseRandomRange();
} else {
curve_entry.translation = ::util::UniformFloatRange(0.0f);
}
curve_entry.wraparound = false;
parse_optional_bool_into("+Wraparound:", &curve_entry.wraparound);
curves[static_cast<std::underlying_type_t<output_enum>>(output_idx)].emplace_back(input_idx, curve_entry);
}
}
void add_curve(std::array<SCP_vector<std::pair<size_t, modular_curves_entry>>, num_outputs>& curves, const SCP_string& input, output_enum output, modular_curves_entry curve_entry) const {
size_t input_idx = get_input_idx_by_name<false>(input.c_str(), std::index_sequence_for<input_grabbers...>{});
curves[static_cast<std::underlying_type_t<output_enum>>(output)].emplace_back(input_idx, curve_entry);
}
// Helper functions to compute the correct type for derived modular curved sets. Meant for unevaluated context (i.e. within a decltype) ONLY!
template<typename maybe_tuple, typename... tuple_additions>
static auto unevaluated_maybe_tuple_cat(const maybe_tuple& in, const tuple_additions&... adds) {
if constexpr(is_tuple_v<maybe_tuple>)
return std::tuple_cat(in, std::tuple<const tuple_additions&...>(adds...));
else
return std::tuple<const maybe_tuple&, const tuple_additions&...>(in, adds...);
}
template<size_t... idx>
static auto unevaluated_tuple_of_input_idx_least_0(std::index_sequence<idx...>) {
return std::tuple<std::integral_constant<int, std::tuple_element_t<idx, input_tuple_index>::value < 0 ? 0 : std::tuple_element_t<idx, input_tuple_index>::value>...>();
}
template<typename tuple_of_integrals, size_t... idx>
static constexpr int find_lowest_tuple_integral_constant(std::index_sequence<idx...>) {
//This explicitly "finds" 0 for a tuple of only -1's
int result = 0;
((result = (result < std::tuple_element_t<idx, tuple_of_integrals>::value ? std::tuple_element_t<idx, tuple_of_integrals>::value : result)), ...);
return result;
}
public:
using input_type_t = const input_type&;
template<typename additional_input_type, typename new_output_enum, size_t new_output_size, typename... additional_input_grabbers>
constexpr auto derive_modular_curves_subset(std::array<std::pair<const char*, new_output_enum>, new_output_size> new_outputs, std::pair<const char*, additional_input_grabbers>... additional_inputs) const {
using new_input_type = decltype(unevaluated_maybe_tuple_cat(std::declval<input_type>(), std::declval<additional_input_type>()));
using new_input_tuple_index = decltype(std::tuple_cat(
//Old tuple accessors, but if they were -1 (i.e. no tuple) set them to 0 (i.e. first element)
unevaluated_tuple_of_input_idx_least_0(std::index_sequence_for<input_grabbers...>()),
//New tuple accessors, highest observed one + 1
std::tuple<std::integral_constant<std::conditional_t<true, int, additional_input_grabbers>, find_lowest_tuple_integral_constant<input_tuple_index>(std::index_sequence_for<input_grabbers...>()) + 1>...>())); //This "seemingly unnecessary" conditional is required to be able to unpack the parameter pack over the additional_input_grabbers and get a tuple type of the identical length
return modular_curves_definition<
new_input_type,
new_output_enum,
new_output_size,
new_input_tuple_index,
input_grabbers..., additional_input_grabbers...>(
std::move(new_outputs), std::tuple_cat(inputs, std::make_tuple(std::move(additional_inputs)...))
);
}
template<typename additional_input_type, typename... additional_input_grabbers>
constexpr auto derive_modular_curves_input_only_subset(std::pair<const char*, additional_input_grabbers>... additional_inputs) const {
using new_input_type = decltype(unevaluated_maybe_tuple_cat(std::declval<input_type>(), std::declval<additional_input_type>()));
using new_input_tuple_index = decltype(std::tuple_cat(
//Old tuple accessors, but if they were -1 (i.e. no tuple) set them to 0 (i.e. first element)
unevaluated_tuple_of_input_idx_least_0(std::index_sequence_for<input_grabbers...>()),
//New tuple accessors, highest observed one + 1
std::tuple<std::integral_constant<std::conditional_t<true, int, additional_input_grabbers>, find_lowest_tuple_integral_constant<input_tuple_index>(std::index_sequence_for<input_grabbers...>()) + 1>...>())); //This "seemingly unnecessary" conditional is required to be able to unpack the parameter pack over the additional_input_grabbers and get a tuple type of the identical length
return modular_curves_definition<
new_input_type,
output_enum,
output_names,
new_input_tuple_index,
input_grabbers..., additional_input_grabbers...>(
outputs, std::tuple_cat(inputs, std::make_tuple(std::move(additional_inputs)...))
);
}
template<typename new_output_enum, size_t new_output_size>
constexpr auto derive_modular_curves_output_only_subset(std::array<std::pair<const char*, new_output_enum>, new_output_size> new_outputs) const {
return modular_curves_definition<
input_type,
new_output_enum,
new_output_size,
input_tuple_index,
input_grabbers...>(std::move(new_outputs), inputs);
}
};
//
// A modular_curves_set contains all data that is required at runtime to store the parsed table.
// It itself contains no static parsing data, only a compiletime reference to the curve definitions (which have this data)
// On the example of weapon curves, one instance of a modular_curves_set should exist for every weapon class.
// Do not manually instance this struct, instead use the make_modular_curve_set<definition>() helper.
//
template<const auto& definitions, typename input_type, typename output_enum, typename input_tuple_index, typename... input_grabbers>
struct modular_curves_set {
private:
// Friends to allow creation from curve definitions
template<typename, typename, size_t, typename, typename...>
friend struct modular_curves_definition;
// Internal data
static constexpr size_t num_inputs = sizeof...(input_grabbers);
static constexpr size_t num_outputs = static_cast<size_t>(output_enum::NUM_VALUES);
using input_grabber_tuple = std::tuple<input_grabbers...>;
std::array<SCP_vector<std::pair<size_t, modular_curves_entry>>, num_outputs> curves; //Output -> List<(Input, curve_entry)>
constexpr modular_curves_set() : curves() {}
public:
using input_type_t = const input_type&;
// Used to create an instance for any single thing affected by modular curves. Note that having an instance is purely optional
[[nodiscard]] modular_curves_entry_instance create_instance() const {
return modular_curves_entry_instance{util::Random::next(), util::Random::next()};
}
private:
// Internal methods for computing the curve result
inline std::pair<float, float> get_maybe_instanced_randoms(output_enum output, size_t input, const modular_curves_entry& curve_entry, const modular_curves_entry_instance* instance) const {
if (instance != nullptr) {
static constexpr std::array<std::array<uint32_t, num_outputs>, num_inputs> inout_seeds = []() constexpr {
std::array<std::array<uint32_t, num_outputs>, num_inputs> temp{};
for(uint32_t in = 0; in < static_cast<uint32_t>(num_inputs); in++) {
for(uint32_t out = 0; out < static_cast<uint32_t>(num_outputs); out++) {
//This isn't perfect, but absolutely sufficient to give each input-output combination different random values.
temp[in][out] = hash_fnv1a(hash_fnv1a(in) ^ out);
}
}
return temp;
}();
uint32_t seed = inout_seeds[input][static_cast<std::underlying_type_t<output_enum>>(output)] ^ curve_entry.curve_idx;
curve_entry.scaling_factor.seed(seed ^ instance->seed_scaling_factor);
curve_entry.translation.seed(seed ^ instance->seed_translation);
//This will yield consistent seeds (and thus random values) for the same tuples of input_idx-output_idx-curve_idx-instance_seed.
//if any of these four changes, the resulting value should be random with regard to the previous value.
//Furthermore, this seed generation is not commutative, so input 0 and output 1 will result in a different seed to input 1 and output 0
}
return {curve_entry.scaling_factor.next(), curve_entry.translation.next()};
}
template<size_t... idx>
inline float get_individual_input(size_t input_index, const input_type& input, std::index_sequence<idx...>) const {
float result = 1.f;
//GCC11+ and Clang will properly unroll this fold expression into a switch-case jumptable
bool matched_case = ((idx == input_index ? (result = std::tuple_element_t<idx, input_grabber_tuple>::template grab<std::tuple_element_t<idx, input_tuple_index>::value>(input)), true : false) || ...);
if (!matched_case) {
UNREACHABLE("Modular Curves requested Input %zu which has no grabber!", input_index);
}
return result;
}
public:
bool has_curve(output_enum output) const {
return !curves[static_cast<std::underlying_type_t<output_enum>>(output)].empty();
}
float get_output(output_enum output, const input_type& input, const modular_curves_entry_instance* instance = nullptr) const {
float result = 1.f;
for (const auto& [input_idx, curve_entry] : curves[static_cast<std::underlying_type_t<output_enum>>(output)]){
const auto& [scaling_factor, translation] = get_maybe_instanced_randoms(output, input_idx, curve_entry, instance);
const auto& curve = Curves[curve_entry.curve_idx];
float input_value = (get_individual_input(input_idx, input, std::index_sequence_for<input_grabbers...>{}) / scaling_factor) + translation;
if (curve_entry.wraparound) {
float final_x = curve.keyframes.back().pos.x;
input_value = std::fmod(input_value, final_x);
}
result *= std::max(curve.GetValue(input_value), 0.0f);
}
return result;
}
void reset() {
for (auto& curve_list : curves) {
curve_list.clear();
}
}
inline void parse(const SCP_string& curve_type) {
definitions.parse(curves, curve_type);
}
// Use add_curve to programmatically add a curve as if it had been tabled.
inline void add_curve(const SCP_string& input, output_enum output, modular_curves_entry curve_entry) {
definitions.add_curve(curves, input, output, curve_entry);
}
};
//
// Helper functions to instance the modular curve structs. Helper functions are used because function template argument deduction is slightly more robust than CTAD, resulting in less verbose calls
//
template<typename input_type, typename output_enum, size_t output_names, typename... input_grabbers>
constexpr auto make_modular_curve_definition(std::array<std::pair<const char*, output_enum>, output_names> outputs, std::pair<const char*, input_grabbers>... inputs) {
return modular_curves_definition<
input_type,
output_enum,
output_names,
std::tuple<std::integral_constant<std::conditional_t<true, int, input_grabbers>, -1>...>, //This "seemingly unnecessary" conditional is required to be able to unpack the parameter pack over the input_grabbers and get a tuple type of the identical length
input_grabbers...>(
std::move(outputs), std::make_tuple(std::move(inputs)...)
);
}
template<const auto& curve_definition>
inline auto make_modular_curve_set() {
using modular_curves_definition = std::decay_t<decltype(curve_definition)>;
return modular_curves_definition::template make_modular_curve_set<curve_definition>();
}
#define MODULAR_CURVE_SET(name, source) decltype(make_modular_curve_set<source>()) name = make_modular_curve_set<source>()
|