File: modular_curves.h

package info (click to toggle)
freespace2 25.0.0~rc11%2Brepack-1
  • links: PTS, VCS
  • area: non-free
  • in suites: forky, sid
  • size: 47,232 kB
  • sloc: cpp: 657,500; ansic: 22,305; sh: 293; python: 200; makefile: 198; xml: 181
file content (688 lines) | stat: -rw-r--r-- 30,944 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
#pragma once

#include "utils/RandomRange.h"
#include "math/curve.h"
#include "parse/encrypt.h"
#include "globalincs/type_traits.h"
#include "parse/parsehi.h"

#include <optional>
#include <type_traits>
#include <utility>

//
// Modular Curve Input Grabbers
//
// These structs help at building accessors to potential inputs for modular curve definitions
// modular_curves_submember_input -> provides a fully inlineable and compiletime-defined way to access class members, members-of-members, and index into global arrays
// modular_curves_functional_input -> provides an interface for grabbing floats from arbitrary functions. Not as well optimizable as the above, and not declarable inline (until C++20)
//

template<auto... grabbers>
struct modular_curves_submember_input {
  protected:
	template<typename input_type, auto grabber>
	static inline auto grab_part(const input_type& input) {
		//Pointer to member function
		if constexpr (std::is_member_function_pointer_v<decltype(grabber)>) {
			if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>>)
				return ((*input).*grabber)();
			else
				return (input.*grabber)();
		}
		//Pointer to member type, i.e. for submember access
		else if constexpr (std::is_member_object_pointer_v<decltype(grabber)>) {
			if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>>)
				return std::cref(input->*grabber);
			else
				return std::cref(input.*grabber);
		}
		//Pointer to static variable, i.e. used to index into things.
		else if constexpr (std::is_pointer_v<decltype(grabber)>) {
			if constexpr (std::is_invocable_v<decltype(grabber), decltype(input)>) {
				//Global func by ref
				return grabber(input);
			}
			else if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>> && std::is_invocable_v<decltype(grabber), std::remove_pointer_t<std::decay_t<decltype(input)>>>) {
				//Global func by ref from ptr
				return grabber(*input);
			}
			else if constexpr (std::is_invocable_v<decltype(grabber), decltype(&input)>) {
				//Global func by ptr
				return grabber(&input);
			}
			else {
				static_assert(std::is_integral_v<std::remove_cv_t<std::remove_reference_t<input_type>>>, "Can only index into array from an integral input");
				using indexing_type = std::decay_t<decltype((*grabber)[input])>;
				if (input >= 0)
					return std::optional<std::reference_wrapper<const indexing_type>>{std::cref((*grabber)[input])};
				else
					return std::optional<std::reference_wrapper<const indexing_type>>(std::nullopt);
			}
		}
		//Integer, used to index into tuples. Should be rarely used by actual users, but is required to do child-types.
		else if constexpr (std::is_integral_v<decltype(grabber)>) {
			if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>>)
				return std::cref(std::get<grabber>(*input));
			else
				return std::cref(std::get<grabber>(input));
		}
		else {
			static_assert(!std::is_same_v<input_type, input_type>, "Unknown grabber type in modular curves");
		}
	}

	template<typename input_type, auto grabber, auto... other_grabbers>
	static inline auto grab_internal(std::reference_wrapper<const input_type> input) {
		//If we're down to one grabber only, return it
		if constexpr (sizeof...(other_grabbers) == 0){
			return grab_part<input_type, grabber>(input.get());
		}
		//Otherwise, use the current grabber, and forward the result to the next grabber
		else {
			const auto& current_access = grab_part<input_type, grabber>(input.get());
			//If the current grabber isn't guaranteed to succeed, check for completion first
			if constexpr (is_optional_v<std::decay_t<decltype(current_access)>>) {
				if constexpr (is_instance_of_v<std::decay_t<decltype(*current_access)>, std::reference_wrapper>) {
					using lower_return_type = decltype(grab_internal<std::decay_t<decltype((*current_access).get())>, other_grabbers...>(*current_access));
					using return_type = typename std::conditional_t<is_optional_v<std::decay_t<lower_return_type>>, lower_return_type, std::optional<lower_return_type>>;
					//If we're already nullopt (i.e. this array access failed) return early
					if (current_access.has_value()) {
						//Now, it's possible that lower acceses _also_ produce optionals. In this case, we need to forward the lower result, not re-wrap it.
						if constexpr (is_optional_v<std::decay_t<lower_return_type>>) {
							return grab_internal<std::decay_t<decltype((*current_access).get())>, other_grabbers...>(*current_access);
						} else {
							return return_type(grab_internal<std::decay_t<decltype((*current_access).get())>, other_grabbers...>(*current_access));
						}
					} else
						return return_type(std::nullopt);
				}
				else {
					using lower_return_type = decltype(grab_internal<std::decay_t<decltype(*current_access)>, other_grabbers...>(*current_access));
					using return_type = typename std::conditional_t<is_optional_v<std::decay_t<lower_return_type>>, lower_return_type, std::optional<lower_return_type>>;
					//If we're already nullopt (i.e. this array access failed) return early
					if (current_access.has_value()) {
						//Now, it's possible that lower acceses _also_ produce optionals. In this case, we need to forward the lower result, not re-wrap it.
						if constexpr (is_optional_v<std::decay_t<lower_return_type>>) {
							return grab_internal<std::decay_t<decltype(*current_access)>, other_grabbers...>(*current_access);
						} else {
							return return_type(grab_internal<std::decay_t<decltype(*current_access)>, other_grabbers...>(*current_access));
						}
					} else
						return return_type(std::nullopt);
				}
			}
			//Otherwise just send it on to the next grabber
			else if constexpr (is_instance_of_v<std::decay_t<decltype(current_access)>, std::reference_wrapper>) {
				return grab_internal<std::decay_t<decltype(current_access.get())>, other_grabbers...>(current_access.get());
			}
			else {
				return grab_internal<std::decay_t<decltype(current_access)>, other_grabbers...>(current_access);
			}
		}
	}

	template<int tuple_idx, typename input_type>
	static inline auto grab_from_tuple(const input_type& input) {
		if constexpr(tuple_idx < 0)
			return std::cref(input);
		else
			return std::cref(std::get<tuple_idx>(input));
	}

	template<typename result_type>
	static inline float number_to_float(const result_type& number) {
		// if constexpr(std::is_same_v<std::decay_t<result_type>, fix>) // TODO: Make sure we can differentiate fixes from ints.
		// 	return f2fl(number);
		// else
		if constexpr(std::is_integral_v<std::decay_t<result_type>>)
			return static_cast<float>(number);
		else if constexpr(std::is_floating_point_v<std::decay_t<result_type>>)
			return static_cast<float>(number);
		else {
			static_assert(!std::is_same_v<result_type, result_type>, "Tried to return non-numeric value");
			return 0.f;
		}
	}

  public:
	template<int tuple_idx, typename input_type>
	static inline float grab(const input_type& input) {
		const auto& result = grab_internal<std::decay_t<decltype(grab_from_tuple<tuple_idx, input_type>(input).get())>, grabbers...>(grab_from_tuple<tuple_idx, input_type>(input));
		if constexpr (is_optional_v<typename std::decay_t<decltype(result)>>) {
			if (result.has_value()) {
				if constexpr (is_instance_of_v<std::decay_t<decltype(*result)>, std::reference_wrapper>)
					return number_to_float(result->get());
				else
					return number_to_float(*result);
			}
			else
				return 1.0f;
		}
		else if constexpr (is_instance_of_v<std::decay_t<decltype(result)>, std::reference_wrapper>) {
			//We could also be returned not a temporary optional from a check, but a true optional stored somewhere, so check for this here
			if constexpr (is_optional_v<typename std::decay_t<typename std::decay_t<decltype(result)>::type>>) {
				const auto& inner_result = result.get();
				if (inner_result.has_value())
					return number_to_float(*inner_result);
				else
					return 1.0f;
			}
			else
				return number_to_float(result.get());
		}
		else {
			return number_to_float(result);
		}
	}
};

//Allows submember grabbers on full inputs by using a reducer-function.
//Mostly useful for submember-like access if you need to combine multiple input components to get the value
template<auto reducer, auto... grabbers>
struct modular_curves_submember_input_full : public modular_curves_submember_input<grabbers...> {
  public:
	template<int /*tuple_idx*/, typename input_type>
	static inline float grab(const input_type& input) {
		const auto& reduced = reducer(input);
		const auto& result = modular_curves_submember_input<grabbers...>::template grab_internal<std::decay_t<decltype(reduced)>, grabbers...>(reduced);
		if constexpr (is_optional_v<typename std::decay_t<decltype(result)>>) {
			if (result.has_value())
				return modular_curves_submember_input<grabbers...>::number_to_float(result->get());
			else
				return 1.0f;
		}
		else if constexpr (is_instance_of_v<std::decay_t<decltype(result)>, std::reference_wrapper>) {
			//We could also be returned not a temporary optional from a check, but a true optional stored somewhere, so check for this here
			if constexpr (is_optional_v<typename std::decay_t<typename std::decay_t<decltype(result)>::type>>) {
				const auto& inner_result = result.get();
				if (inner_result.has_value())
					return modular_curves_submember_input<grabbers...>::number_to_float(*inner_result);
				else
					return 1.0f;
			}
			else
				return modular_curves_submember_input<grabbers...>::number_to_float(result.get());
		}
		else {
			return modular_curves_submember_input<grabbers...>::number_to_float(result);
		}
	}
};

template<const auto& global, auto... grabbers>
struct modular_curves_global_submember_input {
protected:
	template<typename result_type>
	static inline float number_to_float(const result_type& number) {
		// if constexpr(std::is_same_v<std::decay_t<result_type>, fix>) // TODO: Make sure we can differentiate fixes from ints.
		// 	return f2fl(number);
		// else
		if constexpr(std::is_integral_v<std::decay_t<result_type>>)
			return static_cast<float>(number);
		else if constexpr(std::is_floating_point_v<std::decay_t<result_type>>)
			return static_cast<float>(number);
		else {
			static_assert(!std::is_same_v<result_type, result_type>, "Tried to return non-numeric value");
			return 0.f;
		}
	}

public:
	template<int /*tuple_idx*/, typename input_type>
	static inline float grab(const input_type& /*input*/) {
		if constexpr (sizeof...(grabbers) == 0) {
			if constexpr (std::is_invocable_v<std::decay_t<decltype(global)>>) {
				return number_to_float(global());
			} else {
				return number_to_float(global);
			}
		}
		else {
			if constexpr (std::is_invocable_v<std::decay_t<decltype(global)>>) {
				return modular_curves_submember_input<grabbers...>::template grab<-1, decltype(global())>(global());
			} else {
				return modular_curves_submember_input<grabbers...>::template grab<-1, std::decay_t<decltype(global)>>(global);
			}
		}
	}
};

template<auto grabber_fnc>
struct modular_curves_functional_input {  private:
	template<int tuple_idx, typename input_type>
	static inline auto grab_from_tuple(const input_type& input) {
		if constexpr(tuple_idx < 0)
			return std::cref(input);
		else
			return std::cref(std::get<tuple_idx>(input));
	}

  public:
	template<int tuple_idx, typename input_type>
	static inline float grab(const input_type& input) {
		if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>>){
			return grabber_fnc(*grab_from_tuple<tuple_idx, input_type>(input));
		}
		else {
			return grabber_fnc(grab_from_tuple<tuple_idx, input_type>(input));
		}
	}
};

template<auto grabber_fnc>
struct modular_curves_functional_full_input {
  private:
	template<typename input_type, int... tuple_idx>
	static inline auto grab_from_tuple_vararg(const input_type& input, std::integer_sequence<int, tuple_idx...>) {
		return std::forward_as_tuple(std::get<tuple_idx>(input)...);
	}

	template<int tuple_idx, typename input_type>
	static inline auto grab_from_tuple(const input_type& input) {
		if constexpr(tuple_idx < 0)
			return std::cref(input);
		else
			return grab_from_tuple_vararg<input_type>(input, std::make_integer_sequence<int, tuple_idx + 1>{});
	}
  public:
	template<int tuple_idx, typename input_type>
	static inline float grab(const input_type& input) {
		return grabber_fnc(grab_from_tuple<tuple_idx, input_type>(input));
	}
};

enum class ModularCurvesMathOperators {
	addition,
	subtraction,
	multiplication,
	division
};

template <typename first, typename second, auto operation>
struct modular_curves_math_input {
  public:
	template <int tuple_idx, typename input_type>
	static inline float grab(const input_type& input) {
		float first_value = first::template grab<tuple_idx, input_type>(input);
		float second_value = second::template grab<tuple_idx, input_type>(input);
		static_assert(std::is_same_v<decltype(operation), ModularCurvesMathOperators>, "Operation type must be in ModularCurvesMathOperators!");
		if constexpr (operation == ModularCurvesMathOperators::addition) {
			return first_value + second_value;
		} else if constexpr (operation == ModularCurvesMathOperators::subtraction) {
			return first_value - second_value;
		} else if constexpr (operation == ModularCurvesMathOperators::multiplication) {
			return first_value * second_value;
		} else if constexpr (operation == ModularCurvesMathOperators::division) {
			if (second_value != 0.f)
				return first_value / second_value;
			else
				return 1.f;
		} else {
			static_assert(!std::is_same_v<first, first>, "Unknown operation type");
			return 0.f;
		}
	}
};

struct modular_curves_self_input {
private:
	template<int tuple_idx, typename input_type>
	static inline auto grab_from_tuple(const input_type& input) {
		if constexpr(tuple_idx < 0)
			return input;
		else
			return std::get<tuple_idx>(input);
	}

public:
	template<int tuple_idx, typename input_type>
	static inline float grab(const input_type& input) {
		if constexpr (is_dereferenceable_pointer_v<std::remove_reference_t<input_type>>){
			return *grab_from_tuple<tuple_idx, input_type>(input);
		}
		else {
			return grab_from_tuple<tuple_idx, input_type>(input);
		}
	}
};

//
// Non-template modular curve helper structs, carrying per-curve data as well as data per-instance affected by modular curves.
//

// Do not instantiate this manually. The modular_curve_set struct will manage every use of this struct for you automatically.
struct modular_curves_entry {
	int curve_idx = -1;
	::util::ParsedRandomFloatRange scaling_factor = ::util::UniformFloatRange(1.f);
	::util::ParsedRandomFloatRange translation = ::util::UniformFloatRange(0.f);
	bool wraparound = false;
};

//
// This modular_curves_entry_instance contains data for any instances affected by modular curves.
// On the example of Weapon Curves, each weapon instance would have one modular_curves_entry_instance.
// Do not instance this struct manually, instead use modular_curves_set::create_instance()
//
struct modular_curves_entry_instance {
	int seed_scaling_factor;
	int seed_translation;
};

// Forward declaration of modular_curves_set, see explanation below
template<const auto& definitions, typename input_type, typename output_enum, typename input_tuple_index, typename... input_grabbers>
struct modular_curves_set;

//
// The modular_curves_definition contains the definition of one type of modular curves.
// I.e., something like "Weapon Curves" should have ONE global constexpr instance of a modular_curves_definition struct.
// It is in fact required that this instance is constexpr to be able to instance sets from it.
// Do not instance this by hand, but use the make_modular_curve_definition helper template function,
// or modular_curves_definition::derive_modular_curves_subset for derived defitions.
// output_enum must be a contiguous enum with a NUM_VALUES end
//
template<typename input_type, typename output_enum, size_t output_names, typename input_tuple_index, typename... input_grabbers>
struct modular_curves_definition {
  private:
	// Friends for instantiation and access from the set.
	template<typename, typename, size_t, typename, typename...>
	friend struct modular_curves_definition;

	template<const auto&, typename, typename, typename, typename...>
	friend struct modular_curves_set;

	template<const auto&>
	friend inline auto make_modular_curve_set();

	template<typename, typename output_enum_, size_t output_names_, typename... input_grabbers_>
	friend constexpr auto make_modular_curve_definition(std::array<std::pair<const char*, output_enum_>, output_names_> outputs, std::pair<const char*, input_grabbers_>... inputs);

	// Internal data
	using this_definition_type = modular_curves_definition<input_type, output_enum, output_names, input_tuple_index, input_grabbers...>;
	static constexpr size_t num_outputs = static_cast<size_t>(output_enum::NUM_VALUES);

	std::array<std::pair<const char*, output_enum>, output_names> outputs;
	std::tuple<std::pair<const char*, input_grabbers>...> inputs;

	// Constructors and creation helpers
	constexpr modular_curves_definition(std::array<std::pair<const char*, output_enum>, output_names> outputs_, std::tuple<std::pair<const char*, input_grabbers>...> inputs_) : outputs(std::move(outputs_)), inputs(std::move(inputs_)) {}

	template<const this_definition_type& curve_definition>
	static inline auto make_modular_curve_set() {
		return modular_curves_set<curve_definition, input_type, output_enum, input_tuple_index, input_grabbers...>{};
	}

	//Helper function to for parsing
	template<bool parsing, size_t... idx>
	inline size_t get_input_idx_by_name(const char* input, std::index_sequence<idx...>) const {
		size_t result = 0;
		bool matched_case = ((!stricmp(input, std::get<idx>(inputs).first) ? (result = idx), true : false) || ...);
		if (!matched_case) {
			if constexpr (parsing)
				error_display(1, "Unexpected modular curve input %s!", input);
			else
				UNREACHABLE("Unexpected modular curve input %s!", input);
		}
		return result;
	}

	// Parsing
	void parse(std::array<SCP_vector<std::pair<size_t, modular_curves_entry>>, num_outputs>& curves, const SCP_string& curve_type) const {
		while(optional_string(curve_type.c_str())) {
			SCP_string input;
			required_string("+Input:");
			stuff_string(input, F_NAME);
			size_t input_idx = get_input_idx_by_name<true>(input.c_str(), std::index_sequence_for<input_grabbers...>{});

			SCP_string output;
			required_string("+Output:");
			stuff_string(output, F_NAME);

			bool found_output = false;
			auto output_idx = static_cast<output_enum>(0);
			for (const auto& output_pair : outputs){
				if (!stricmp(output_pair.first, output.c_str())){
					found_output = true;
					output_idx = output_pair.second;
					break;
				}
			}
			if (!found_output){
				error_display(1, "Unexpected modular curve output %s!", output.c_str());
			}

			modular_curves_entry curve_entry;

			required_string_either("+Curve Name:", "+Curve:", true);
			curve_entry.curve_idx = curve_parse(" Unknown curve requested for modular curves!");
			if (curve_entry.curve_idx < 0){
				error_display(1, "Unknown curve requested for modular curves!");
			}

			if (optional_string("+Random Scaling Factor:")) {
				curve_entry.scaling_factor = ::util::ParsedRandomFloatRange::parseRandomRange();
			} else {
				curve_entry.scaling_factor = ::util::UniformFloatRange(1.0f);
			}
			if (optional_string("+Random Translation:")) {
				curve_entry.translation = ::util::ParsedRandomFloatRange::parseRandomRange();
			} else {
				curve_entry.translation = ::util::UniformFloatRange(0.0f);
			}

			curve_entry.wraparound = false;
			parse_optional_bool_into("+Wraparound:", &curve_entry.wraparound);

			curves[static_cast<std::underlying_type_t<output_enum>>(output_idx)].emplace_back(input_idx, curve_entry);
		}
	}

	void add_curve(std::array<SCP_vector<std::pair<size_t, modular_curves_entry>>, num_outputs>& curves, const SCP_string& input, output_enum output, modular_curves_entry curve_entry) const {
		size_t input_idx = get_input_idx_by_name<false>(input.c_str(), std::index_sequence_for<input_grabbers...>{});
		curves[static_cast<std::underlying_type_t<output_enum>>(output)].emplace_back(input_idx, curve_entry);
	}

	// Helper functions to compute the correct type for derived modular curved sets. Meant for unevaluated context (i.e. within a decltype) ONLY!
	template<typename maybe_tuple, typename... tuple_additions>
	static auto unevaluated_maybe_tuple_cat(const maybe_tuple& in, const tuple_additions&... adds) {
		if constexpr(is_tuple_v<maybe_tuple>)
			return std::tuple_cat(in, std::tuple<const tuple_additions&...>(adds...));
		else
			return std::tuple<const maybe_tuple&, const tuple_additions&...>(in, adds...);
	}

	template<size_t... idx>
	static auto unevaluated_tuple_of_input_idx_least_0(std::index_sequence<idx...>) {
		return std::tuple<std::integral_constant<int, std::tuple_element_t<idx, input_tuple_index>::value < 0 ? 0 : std::tuple_element_t<idx, input_tuple_index>::value>...>();
	}

	template<typename tuple_of_integrals, size_t... idx>
	static constexpr int find_lowest_tuple_integral_constant(std::index_sequence<idx...>) {
		//This explicitly "finds" 0 for a tuple of only -1's
		int result = 0;
		((result = (result < std::tuple_element_t<idx, tuple_of_integrals>::value ? std::tuple_element_t<idx, tuple_of_integrals>::value : result)), ...);
		return result;
	}

public:
  	using input_type_t = const input_type&;

	template<typename additional_input_type, typename new_output_enum, size_t new_output_size, typename... additional_input_grabbers>
	constexpr auto derive_modular_curves_subset(std::array<std::pair<const char*, new_output_enum>, new_output_size> new_outputs, std::pair<const char*, additional_input_grabbers>... additional_inputs) const {
		using new_input_type = decltype(unevaluated_maybe_tuple_cat(std::declval<input_type>(), std::declval<additional_input_type>()));
		using new_input_tuple_index = decltype(std::tuple_cat(
				//Old tuple accessors, but if they were -1 (i.e. no tuple) set them to 0 (i.e. first element)
				unevaluated_tuple_of_input_idx_least_0(std::index_sequence_for<input_grabbers...>()),
				//New tuple accessors, highest observed one + 1
				std::tuple<std::integral_constant<std::conditional_t<true, int, additional_input_grabbers>, find_lowest_tuple_integral_constant<input_tuple_index>(std::index_sequence_for<input_grabbers...>()) + 1>...>())); //This "seemingly unnecessary" conditional is required to be able to unpack the parameter pack over the additional_input_grabbers and get a tuple type of the identical length
		return modular_curves_definition<
				new_input_type,
				new_output_enum,
				new_output_size,
				new_input_tuple_index,
				input_grabbers..., additional_input_grabbers...>(
				std::move(new_outputs), std::tuple_cat(inputs, std::make_tuple(std::move(additional_inputs)...))
		);
	}

	template<typename additional_input_type, typename... additional_input_grabbers>
	constexpr auto derive_modular_curves_input_only_subset(std::pair<const char*, additional_input_grabbers>... additional_inputs) const {
		using new_input_type = decltype(unevaluated_maybe_tuple_cat(std::declval<input_type>(), std::declval<additional_input_type>()));
		using new_input_tuple_index = decltype(std::tuple_cat(
				//Old tuple accessors, but if they were -1 (i.e. no tuple) set them to 0 (i.e. first element)
				unevaluated_tuple_of_input_idx_least_0(std::index_sequence_for<input_grabbers...>()),
				//New tuple accessors, highest observed one + 1
				std::tuple<std::integral_constant<std::conditional_t<true, int, additional_input_grabbers>, find_lowest_tuple_integral_constant<input_tuple_index>(std::index_sequence_for<input_grabbers...>()) + 1>...>())); //This "seemingly unnecessary" conditional is required to be able to unpack the parameter pack over the additional_input_grabbers and get a tuple type of the identical length
		return modular_curves_definition<
				new_input_type,
				output_enum,
				output_names,
				new_input_tuple_index,
				input_grabbers..., additional_input_grabbers...>(
				outputs, std::tuple_cat(inputs, std::make_tuple(std::move(additional_inputs)...))
		);
	}

	template<typename new_output_enum, size_t new_output_size>
	constexpr auto derive_modular_curves_output_only_subset(std::array<std::pair<const char*, new_output_enum>, new_output_size> new_outputs) const {
		return modular_curves_definition<
			input_type,
			new_output_enum,
			new_output_size,
			input_tuple_index,
			input_grabbers...>(std::move(new_outputs), inputs);
	}
};

//
// A modular_curves_set contains all data that is required at runtime to store the parsed table.
// It itself contains no static parsing data, only a compiletime reference to the curve definitions (which have this data)
// On the example of weapon curves, one instance of a modular_curves_set should exist for every weapon class.
// Do not manually instance this struct, instead use the make_modular_curve_set<definition>() helper.
//
template<const auto& definitions, typename input_type, typename output_enum, typename input_tuple_index, typename... input_grabbers>
struct modular_curves_set {
private:
	// Friends to allow creation from curve definitions
	template<typename, typename, size_t, typename, typename...>
	friend struct modular_curves_definition;

	// Internal data
	static constexpr size_t num_inputs = sizeof...(input_grabbers);
	static constexpr size_t num_outputs = static_cast<size_t>(output_enum::NUM_VALUES);

	using input_grabber_tuple = std::tuple<input_grabbers...>;
	std::array<SCP_vector<std::pair<size_t, modular_curves_entry>>, num_outputs> curves; //Output -> List<(Input, curve_entry)>

	constexpr modular_curves_set() : curves() {}
public:
 	using input_type_t = const input_type&;

	// Used to create an instance for any single thing affected by modular curves. Note that having an instance is purely optional
	[[nodiscard]] modular_curves_entry_instance create_instance() const {
		return modular_curves_entry_instance{util::Random::next(), util::Random::next()};
	}

private:
	// Internal methods for computing the curve result
	inline std::pair<float, float> get_maybe_instanced_randoms(output_enum output, size_t input, const modular_curves_entry& curve_entry, const modular_curves_entry_instance* instance) const {
		if (instance != nullptr) {
			static constexpr std::array<std::array<uint32_t, num_outputs>, num_inputs> inout_seeds = []() constexpr {
				std::array<std::array<uint32_t, num_outputs>, num_inputs> temp{};
				for(uint32_t in = 0; in < static_cast<uint32_t>(num_inputs); in++) {
					for(uint32_t out = 0; out < static_cast<uint32_t>(num_outputs); out++) {
						//This isn't perfect, but absolutely sufficient to give each input-output combination different random values.
						temp[in][out] = hash_fnv1a(hash_fnv1a(in) ^ out);
					}
				}
				return temp;
			}();

			uint32_t seed = inout_seeds[input][static_cast<std::underlying_type_t<output_enum>>(output)] ^ curve_entry.curve_idx;

			curve_entry.scaling_factor.seed(seed ^ instance->seed_scaling_factor);
			curve_entry.translation.seed(seed ^ instance->seed_translation);

			//This will yield consistent seeds (and thus random values) for the same tuples of input_idx-output_idx-curve_idx-instance_seed.
			//if any of these four changes, the resulting value should be random with regard to the previous value.
			//Furthermore, this seed generation is not commutative, so input 0 and output 1 will result in a different seed to input 1 and output 0
		}

		return {curve_entry.scaling_factor.next(), curve_entry.translation.next()};
	}

	template<size_t... idx>
	inline float get_individual_input(size_t input_index, const input_type& input, std::index_sequence<idx...>) const {
		float result = 1.f;
		//GCC11+ and Clang will properly unroll this fold expression into a switch-case jumptable
		bool matched_case = ((idx == input_index ? (result = std::tuple_element_t<idx, input_grabber_tuple>::template grab<std::tuple_element_t<idx, input_tuple_index>::value>(input)), true : false) || ...);
		if (!matched_case) {
			UNREACHABLE("Modular Curves requested Input %zu which has no grabber!", input_index);
		}
		return result;
	}

public:
	bool has_curve(output_enum output) const {
		return !curves[static_cast<std::underlying_type_t<output_enum>>(output)].empty();
	}

	float get_output(output_enum output, const input_type& input, const modular_curves_entry_instance* instance = nullptr) const {
		float result = 1.f;

		for (const auto& [input_idx, curve_entry] : curves[static_cast<std::underlying_type_t<output_enum>>(output)]){
			const auto& [scaling_factor, translation] = get_maybe_instanced_randoms(output, input_idx, curve_entry, instance);
			const auto& curve = Curves[curve_entry.curve_idx];

			float input_value = (get_individual_input(input_idx, input, std::index_sequence_for<input_grabbers...>{}) / scaling_factor) + translation;

			if (curve_entry.wraparound) {
				float final_x = curve.keyframes.back().pos.x;
				input_value = std::fmod(input_value, final_x);
			}

			result *= std::max(curve.GetValue(input_value), 0.0f);
		}

		return result;
	}

	void reset() {
		for (auto& curve_list : curves) {
			curve_list.clear();
		}
	}

	inline void parse(const SCP_string& curve_type) {
		definitions.parse(curves, curve_type);
	}

	// Use add_curve to programmatically add a curve as if it had been tabled.
	inline void add_curve(const SCP_string& input, output_enum output, modular_curves_entry curve_entry) {
		definitions.add_curve(curves, input, output, curve_entry);
	}
};

//
// Helper functions to instance the modular curve structs. Helper functions are used because function template argument deduction is slightly more robust than CTAD, resulting in less verbose calls
//

template<typename input_type, typename output_enum, size_t output_names, typename... input_grabbers>
constexpr auto make_modular_curve_definition(std::array<std::pair<const char*, output_enum>, output_names> outputs, std::pair<const char*, input_grabbers>... inputs) {
	return modular_curves_definition<
			input_type,
			output_enum,
			output_names,
			std::tuple<std::integral_constant<std::conditional_t<true, int, input_grabbers>, -1>...>, //This "seemingly unnecessary" conditional is required to be able to unpack the parameter pack over the input_grabbers and get a tuple type of the identical length
			input_grabbers...>(
			std::move(outputs), std::make_tuple(std::move(inputs)...)
	);
}

template<const auto& curve_definition>
inline auto make_modular_curve_set() {
	using modular_curves_definition = std::decay_t<decltype(curve_definition)>;
	return modular_curves_definition::template make_modular_curve_set<curve_definition>();
}

#define MODULAR_CURVE_SET(name, source) decltype(make_modular_curve_set<source>()) name = make_modular_curve_set<source>()