1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
|
/*
* Copyright (C) Volition, Inc. 1999. All rights reserved.
*
* All source code herein is the property of Volition, Inc. You may not sell
* or otherwise commercially exploit the source or things you created based on the
* source.
*
*/
#include "object/objcollide.h"
#include "object/object.h"
#include "ship/ship.h"
#include "freespace2/freespace.h"
#include "ship/shiphit.h"
#include "gamesnd/gamesnd.h"
#include "render/3d.h" // needed for View_position, which is used when playing 3d sound
#include "gamesequence/gamesequence.h"
#include "hud/hudshield.h"
#include "hud/hudmessage.h"
#include "io/joy_ff.h"
#include "io/timer.h"
#include "asteroid/asteroid.h"
#include "debris/debris.h"
#include "playerman/player.h"
#include "object/objectdock.h"
#include "object/objectshield.h"
#include "parse/scripting.h"
#define COLLIDE_DEBUG
#undef COLLIDE_DEBUG
// GENERAL COLLISIONS FUNCTIONS
// calculates the inverse moment of inertia matrix in world coordinates
void get_I_inv (matrix* I_inv, matrix* I_inv_body, matrix* orient);
// calculate the physics of extended two body collisions
void calculate_ship_ship_collision_physics(collision_info_struct *ship_ship_hit_info);
int ship_hit_shield(object *obj, mc_info *mc, collision_info_struct *sshs);
void collect_ship_ship_physics_info(object *heavy, object *light, mc_info *mc_info, collision_info_struct *ship_ship_hit_info);
#ifndef NDEBUG
static int Collide_friendly = 1;
DCF_BOOL( collide_friendly, Collide_friendly )
#endif
static int Player_collide_sound, AI_collide_sound;
static int Player_collide_shield_sound, AI_collide_shield_sound;
/**
* Return true if two ships are docking.
*/
int ships_are_docking(object *objp1, object *objp2)
{
ai_info *aip1, *aip2;
ship *shipp1, *shipp2;
shipp1 = &Ships[objp1->instance];
shipp2 = &Ships[objp2->instance];
aip1 = &Ai_info[shipp1->ai_index];
aip2 = &Ai_info[shipp2->ai_index];
if (dock_check_find_direct_docked_object(objp1, objp2)) {
return 1;
}
if (aip1->mode == AIM_DOCK) {
if (aip1->goal_objnum == OBJ_INDEX(objp2)){
return 1;
}
}
if (aip2->mode == AIM_DOCK) {
if (aip2->goal_objnum == OBJ_INDEX(objp1)){
return 1;
}
}
return 0;
}
/**
* If light_obj emerging from or departing to dock bay in heavy_obj, no collision detection.
*/
int bay_emerge_or_depart(object *heavy_objp, object *light_objp)
{
if (light_objp->type != OBJ_SHIP)
return 0;
ai_info *aip = &Ai_info[Ships[light_objp->instance].ai_index];
// the player shouldn't be allowed to fly through the ship just cause the rest of their wing can
if ((Player_obj == light_objp) && !Player_use_ai){
return 0;
}
if ((aip->mode == AIM_BAY_EMERGE) || (aip->mode == AIM_BAY_DEPART)) {
if (aip->goal_objnum == OBJ_INDEX(heavy_objp))
return 1;
}
return 0;
}
int ship_ship_check_collision(collision_info_struct *ship_ship_hit_info, vec3d *hitpos)
{
object *heavy_obj = ship_ship_hit_info->heavy;
object *light_obj = ship_ship_hit_info->light;
int player_involved; // flag to indicate that A or B is the Player_obj
Assert( heavy_obj->type == OBJ_SHIP );
Assert( light_obj->type == OBJ_SHIP );
ship *heavy_shipp = &Ships[heavy_obj->instance];
ship *light_shipp = &Ships[light_obj->instance];
ship_info *heavy_sip = &Ship_info[heavy_shipp->ship_info_index];
ship_info *light_sip = &Ship_info[light_shipp->ship_info_index];
// AL 12-4-97: we use the player_involved flag to ensure collisions are always
// done with the player, regardless of team.
if ( heavy_obj == Player_obj || light_obj == Player_obj ) {
player_involved = 1;
} else {
player_involved = 0;
}
// Make ships that are warping in not get collision detection done
if ( heavy_shipp->flags & SF_ARRIVING_STAGE_1 ) {
return 0;
}
// Don't do collision detection for docking ships, since they will always collide while trying to dock
if ( ships_are_docking(heavy_obj, light_obj) ) {
return 0;
}
// If light_obj emerging from or departing to dock bay in heavy_obj, no collision detection.
if (bay_emerge_or_depart(heavy_obj, light_obj)) {
return 0;
}
// Ships which are dying should not do collision detection.
// Also, this is the only clean way I could figure to get ships to not do damage to each other for one frame
// when they are docked and departing. Due to sequencing, they would not show up as docked, yet they
// would still come through here, so they would harm each other, if on opposing teams. -- MK, 2/2/98
if ((heavy_obj->flags & OF_SHOULD_BE_DEAD) || (light_obj->flags & OF_SHOULD_BE_DEAD)) {
return 0;
}
#ifndef NDEBUG
// Don't do collision detection on a pair of ships on the same team.
// Change this someday, but for now, it's a problem.
if ( !Collide_friendly ) { // Collide_friendly is a global value changed via debug console
if ( (!player_involved) && (heavy_shipp->team == light_shipp->team) ) {
return 0;
}
}
#endif
// Apparently we're doing same team collisions.
// But, if both are offscreen, ignore the collision
if (heavy_shipp->team == light_shipp->team) {
if ( (!(heavy_obj->flags & OF_WAS_RENDERED) && !(light_obj->flags & OF_WAS_RENDERED)) ) {
return 0;
}
}
// If either of these objects doesn't get collision checks, abort.
if (heavy_sip->flags & SIF_NO_COLLIDE) {
return 0;
}
if (light_sip->flags & SIF_NO_COLLIDE) {
return 0;
}
// Set up model_collide info
mc_info mc;
// Do in heavy object RF
mc.model_num = heavy_sip->model_num; // Fill in the model to check
mc.model_instance_num = heavy_shipp->model_instance_num;
mc.orient = &heavy_obj->orient; // The object's orient
vec3d zero, p0, p1;
vm_vec_zero(&zero); // we need the physical vector and can not set its value to zero
vm_vec_sub(&p0, &light_obj->last_pos, &heavy_obj->last_pos);
vm_vec_sub(&p1, &light_obj->pos, &heavy_obj->pos);
// find the light object's position in the heavy object's reference frame at last frame and also in this frame.
vec3d p0_temp, p0_rotated;
// Collision detection from rotation enabled if at max rotaional velocity and 5fps, rotation is less than PI/2
// This should account for all ships
if ( (vm_vec_mag_squared( &heavy_obj->phys_info.max_rotvel ) * .04) < (PI*PI/4) ) {
// collide_rotate calculate (1) start position and (2) relative velocity
ship_ship_hit_info->collide_rotate = 1;
vm_vec_rotate(&p0_temp, &p0, &heavy_obj->last_orient);
vm_vec_unrotate(&p0_rotated, &p0_temp, &heavy_obj->orient);
mc.p0 = &p0_rotated; // Point 1 of ray to check
vm_vec_sub(&ship_ship_hit_info->light_rel_vel, &p1, &p0_rotated);
vm_vec_scale(&ship_ship_hit_info->light_rel_vel, 1/flFrametime);
} else {
// should be no ships that can rotate this fast
Int3();
ship_ship_hit_info->collide_rotate = 0;
mc.p0 = &p0; // Point 1 of ray to check
vm_vec_sub(&ship_ship_hit_info->light_rel_vel, &light_obj->phys_info.vel, &heavy_obj->phys_info.vel);
}
// Set up collision info
mc.pos = &zero; // The object's position
mc.p1 = &p1; // Point 2 of ray to check
mc.radius = model_get_core_radius(light_sip->model_num);
mc.flags = (MC_CHECK_MODEL | MC_CHECK_SPHERELINE); // flags
// Only check invisible face polygons for ship:ship of different teams.
if ( !(heavy_shipp->flags2 & SF2_DONT_COLLIDE_INVIS) ) {
if ((heavy_obj->flags & OF_PLAYER_SHIP) || (light_obj->flags & OF_PLAYER_SHIP) || (heavy_shipp->team != light_shipp->team) ) {
mc.flags |= MC_CHECK_INVISIBLE_FACES;
}
}
// copy important data
int copy_flags = mc.flags; // make a copy of start end positions of sphere in big ship RF
vec3d copy_p0, copy_p1;
copy_p0 = *mc.p0;
copy_p1 = *mc.p1;
// first test against the sphere - if this fails then don't do any submodel tests
mc.flags = MC_ONLY_SPHERE | MC_CHECK_SPHERELINE;
SCP_vector<int> submodel_vector;
int valid_hit_occured = 0;
polymodel *pm, *pm_light;
polymodel_instance *pmi;
pm_light = model_get(Ship_info[light_shipp->ship_info_index].model_num);
if(pm_light->submodel[pm_light->detail[0]].no_collisions) {
return 0;
}
if (model_collide(&mc)) {
// Set earliest hit time
ship_ship_hit_info->hit_time = FLT_MAX;
// Do collision the cool new way
if ( ship_ship_hit_info->collide_rotate ) {
SCP_vector<int>::iterator smv;
model_get_rotating_submodel_list(&submodel_vector, heavy_obj);
pm = model_get(Ship_info[heavy_shipp->ship_info_index].model_num);
pmi = model_get_instance(heavy_shipp->model_instance_num);
// turn off all rotating submodels and test for collision
for (smv = submodel_vector.begin(); smv != submodel_vector.end(); ++smv) {
pmi->submodel[*smv].collision_checked = true;
}
// reset flags to check MC_CHECK_MODEL | MC_CHECK_SPHERELINE and maybe MC_CHECK_INVISIBLE_FACES and MC_SUBMODEL_INSTANCE
mc.flags = copy_flags | MC_SUBMODEL_INSTANCE;
// check each submodel in turn
for (smv = submodel_vector.begin(); smv != submodel_vector.end(); ++smv) {
// turn on submodel for collision test
pmi->submodel[*smv].collision_checked = false;
if (pmi->submodel[*smv].blown_off)
{
pmi->submodel[*smv].collision_checked = true;
continue;
}
// set angles for last frame
angles copy_angles = pmi->submodel[*smv].angs;
// find the start and end positions of the sphere in submodel RF
pmi->submodel[*smv].angs = pmi->submodel[*smv].prev_angs;
world_find_model_instance_point(&p0, &light_obj->last_pos, pm, pmi, *smv, &heavy_obj->last_orient, &heavy_obj->last_pos);
pmi->submodel[*smv].angs = copy_angles;
world_find_model_instance_point(&p1, &light_obj->pos, pm, pmi, *smv, &heavy_obj->orient, &heavy_obj->pos);
mc.p0 = &p0;
mc.p1 = &p1;
mc.orient = &vmd_identity_matrix;
mc.submodel_num = *smv;
if ( model_collide(&mc) ) {
if (mc.hit_dist < ship_ship_hit_info->hit_time ) {
valid_hit_occured = 1;
// set up ship_ship_hit_info common
set_hit_struct_info(ship_ship_hit_info, &mc, SUBMODEL_ROT_HIT);
model_instance_find_world_point(&ship_ship_hit_info->hit_pos, &mc.hit_point, mc.model_num, mc.model_instance_num, mc.hit_submodel, &heavy_obj->orient, &zero);
// set up ship_ship_hit_info for rotating submodel
if (ship_ship_hit_info->edge_hit == 0) {
model_instance_find_obj_dir(&ship_ship_hit_info->collision_normal, &mc.hit_normal, heavy_obj, mc.hit_submodel);
}
// find position in submodel RF of light object at collison
vec3d int_light_pos, diff;
vm_vec_sub(&diff, mc.p1, mc.p0);
vm_vec_scale_add(&int_light_pos, mc.p0, &diff, mc.hit_dist);
model_instance_find_world_point(&ship_ship_hit_info->light_collision_cm_pos, &int_light_pos, mc.model_num, mc.model_instance_num, mc.hit_submodel, &heavy_obj->orient, &zero);
}
}
}
}
// Recover and do usual ship_ship collision, but without rotating submodels
mc.flags = copy_flags;
*mc.p0 = copy_p0;
*mc.p1 = copy_p1;
mc.orient = &heavy_obj->orient;
// usual ship_ship collision test
if ( model_collide(&mc) ) {
// check if this is the earliest hit
if (mc.hit_dist < ship_ship_hit_info->hit_time) {
valid_hit_occured = 1;
set_hit_struct_info(ship_ship_hit_info, &mc, SUBMODEL_NO_ROT_HIT);
// get collision normal if not edge hit
if (ship_ship_hit_info->edge_hit == 0) {
model_instance_find_obj_dir(&ship_ship_hit_info->collision_normal, &mc.hit_normal, heavy_obj, mc.hit_submodel);
}
// find position in submodel RF of light object at collison
vec3d diff;
vm_vec_sub(&diff, mc.p1, mc.p0);
vm_vec_scale_add(&ship_ship_hit_info->light_collision_cm_pos, mc.p0, &diff, mc.hit_dist);
}
}
}
if (valid_hit_occured) {
// Collision debug stuff
#ifdef DEBUG
object *collide_obj = NULL;
if (heavy_obj == Player_obj) {
collide_obj = light_obj;
} else if (light_obj == Player_obj) {
collide_obj = heavy_obj;
}
if ((collide_obj != NULL) && (Ship_info[Ships[collide_obj->instance].ship_info_index].flags & (SIF_FIGHTER | SIF_BOMBER))) {
char *submode_string = "";
ai_info *aip;
extern char *Mode_text[];
aip = &Ai_info[Ships[collide_obj->instance].ai_index];
if (aip->mode == AIM_CHASE)
submode_string = Submode_text[aip->submode];
nprintf(("AI", "Player collided with ship %s, AI mode = %s, submode = %s\n", Ships[collide_obj->instance].ship_name, Mode_text[aip->mode], submode_string));
}
#endif
// Update ai to deal with collisions
if (heavy_obj-Objects == Ai_info[light_shipp->ai_index].target_objnum) {
Ai_info[light_shipp->ai_index].ai_flags |= AIF_TARGET_COLLISION;
}
if (light_obj-Objects == Ai_info[heavy_shipp->ai_index].target_objnum) {
Ai_info[heavy_shipp->ai_index].ai_flags |= AIF_TARGET_COLLISION;
}
// SET PHYSICS PARAMETERS
// already have (hitpos - heavy) and light_cm_pos
// get heavy cm pos - already have light_cm_pos
ship_ship_hit_info->heavy_collision_cm_pos = zero;
// get r_heavy and r_light
ship_ship_hit_info->r_heavy = ship_ship_hit_info->hit_pos;
vm_vec_sub(&ship_ship_hit_info->r_light, &ship_ship_hit_info->hit_pos, &ship_ship_hit_info->light_collision_cm_pos);
// set normal for edge hit
if ( ship_ship_hit_info->edge_hit ) {
vm_vec_copy_normalize(&ship_ship_hit_info->collision_normal, &ship_ship_hit_info->r_light);
vm_vec_negate(&ship_ship_hit_info->collision_normal);
}
// get world hitpos
vm_vec_add(hitpos, &ship_ship_hit_info->heavy->pos, &ship_ship_hit_info->r_heavy);
// do physics
calculate_ship_ship_collision_physics(ship_ship_hit_info);
// Provide some separation for the case of same team
if (heavy_shipp->team == light_shipp->team) {
// If a couple of small ships, just move them apart.
if ((heavy_sip->flags & SIF_SMALL_SHIP) && (light_sip->flags & SIF_SMALL_SHIP)) {
if ((heavy_obj->flags & OF_PLAYER_SHIP) || (light_obj->flags & OF_PLAYER_SHIP)) {
vec3d h_to_l_vec;
vec3d rel_vel_h;
vec3d perp_rel_vel;
vm_vec_sub(&h_to_l_vec, &heavy_obj->pos, &light_obj->pos);
vm_vec_sub(&rel_vel_h, &heavy_obj->phys_info.vel, &light_obj->phys_info.vel);
float mass_sum = light_obj->phys_info.mass + heavy_obj->phys_info.mass;
// get comp of rel_vel perp to h_to_l_vec;
float mag = vm_vec_dotprod(&h_to_l_vec, &rel_vel_h) / vm_vec_mag_squared(&h_to_l_vec);
vm_vec_scale_add(&perp_rel_vel, &rel_vel_h, &h_to_l_vec, -mag);
vm_vec_normalize(&perp_rel_vel);
vm_vec_scale_add2(&heavy_obj->phys_info.vel, &perp_rel_vel,
heavy_sip->collision_physics.both_small_bounce * light_obj->phys_info.mass / mass_sum);
vm_vec_scale_add2(&light_obj->phys_info.vel, &perp_rel_vel,
-(light_sip->collision_physics.both_small_bounce) * heavy_obj->phys_info.mass / mass_sum);
vm_vec_rotate( &heavy_obj->phys_info.prev_ramp_vel, &heavy_obj->phys_info.vel, &heavy_obj->orient );
vm_vec_rotate( &light_obj->phys_info.prev_ramp_vel, &light_obj->phys_info.vel, &light_obj->orient );
}
} else {
// add extra velocity to separate the two objects, backing up the direction we came in.
// TODO: add effect of velocity from rotating submodel
float rel_vel = vm_vec_mag_quick( &ship_ship_hit_info->light_rel_vel);
if (rel_vel < 1) {
rel_vel = 1.0f;
}
float mass_sum = heavy_obj->phys_info.mass + light_obj->phys_info.mass;
vm_vec_scale_add2( &heavy_obj->phys_info.vel, &ship_ship_hit_info->light_rel_vel,
heavy_sip->collision_physics.bounce*light_obj->phys_info.mass/(mass_sum*rel_vel) );
vm_vec_rotate( &heavy_obj->phys_info.prev_ramp_vel, &heavy_obj->phys_info.vel, &heavy_obj->orient );
vm_vec_scale_add2( &light_obj->phys_info.vel, &ship_ship_hit_info->light_rel_vel,
-(light_sip->collision_physics.bounce)*heavy_obj->phys_info.mass/(mass_sum*rel_vel) );
vm_vec_rotate( &light_obj->phys_info.prev_ramp_vel, &light_obj->phys_info.vel, &light_obj->orient );
}
}
}
return valid_hit_occured;
}
/**
* Gets modified mass of cruiser in cruiser/asteroid collision so cruisers don't get bumped so hard.
* modified mass is 10x, 4x, or 2x larger than asteroid mass
* @return 1 if modified mass is larger than given mass, 0 otherwise
*/
int check_special_cruiser_asteroid_collision(object *heavy, object *light, float *cruiser_mass, int *cruiser_light)
{
int asteroid_type;
if (heavy->type == OBJ_ASTEROID) {
Assert(light->type == OBJ_SHIP);
if (Ship_info[Ships[light->instance].ship_info_index].flags & (SIF_BIG_SHIP | SIF_HUGE_SHIP)) {
asteroid_type = Asteroids[heavy->instance].asteroid_type;
if (asteroid_type == 0) {
*cruiser_mass = 10.0f * heavy->phys_info.mass;
} else if (asteroid_type == 1) {
*cruiser_mass = 4.0f * heavy->phys_info.mass;
} else {
*cruiser_mass = 2.0f * heavy->phys_info.mass;
}
if (*cruiser_mass > light->phys_info.mass) {
*cruiser_light = 1;
return 1;
}
}
} else if (light->type == OBJ_ASTEROID) {
Assert(heavy->type == OBJ_SHIP);
if (Ship_info[Ships[heavy->instance].ship_info_index].flags & SIF_BIG_SHIP) {
asteroid_type = Asteroids[light->instance].asteroid_type;
if (asteroid_type == 0) {
*cruiser_mass = 10.0f * light->phys_info.mass;
} else if (asteroid_type == 1) {
*cruiser_mass = 4.0f * light->phys_info.mass;
} else {
*cruiser_mass = 2.0f * light->phys_info.mass;
}
if (*cruiser_mass > heavy->phys_info.mass) {
*cruiser_light = 0;
return 1;
}
}
}
return 0;
}
/**
* Find the subobject corresponding to the submodel hit
*/
bool check_subsystem_landing_allowed(ship_info *heavy_sip, collision_info_struct *ship_ship_hit_info) {
if (!(heavy_sip->flags2 & SIF2_ALLOW_LANDINGS))
return false;
for (int i = 0; i < heavy_sip->n_subsystems; i++) {
if (heavy_sip->subsystems[i].flags & MSS_FLAG_ALLOW_LANDING &&
heavy_sip->subsystems[i].subobj_num == ship_ship_hit_info->submodel_num)
{
return true;
}
}
return false;
}
// ------------------------------------------------------------------------------------------------
// input: ship_ship_hit => structure containing ship_ship hit info
// (includes) A, B => objects colliding
// r_A, r_B => position to collision from center of mass
// collision_normal => collision_normal (outward from B)
//
// output: velocity, angular velocity, impulse
//
// ------------------------------------------------------------------------------------------------
//
// calculates correct physics response to collision between two objects given
// masses, moments of inertia, velocities, angular velocities,
// relative collision positions, and the impulse direction
//
void calculate_ship_ship_collision_physics(collision_info_struct *ship_ship_hit_info)
{
// important parameters passed thru ship_ship_or_debris_hit
// calculate the whack applied to each ship from collision
// make local copies of hit_struct parameters
object *heavy = ship_ship_hit_info->heavy;
object *light = ship_ship_hit_info->light;
// gurgh... this includes asteroids and debris too
Assert(heavy->type == OBJ_SHIP || heavy->type == OBJ_ASTEROID || heavy->type == OBJ_DEBRIS);
Assert(light->type == OBJ_SHIP || light->type == OBJ_ASTEROID || light->type == OBJ_DEBRIS);
ship_info *light_sip = (light->type == OBJ_SHIP) ? &Ship_info[Ships[light->instance].ship_info_index] : NULL;
ship_info *heavy_sip = (heavy->type == OBJ_SHIP) ? &Ship_info[Ships[heavy->instance].ship_info_index] : NULL;
// make cruiser/asteroid collision softer on cruisers.
int special_cruiser_asteroid_collision;
int cruiser_light = 0;
float cruiser_mass = 0.0f, copy_mass = 0.0f;
special_cruiser_asteroid_collision = check_special_cruiser_asteroid_collision(heavy, light, &cruiser_mass, &cruiser_light);
if (special_cruiser_asteroid_collision) {
if (cruiser_light) {
Assert(light->phys_info.mass < cruiser_mass);
copy_mass = light->phys_info.mass;
light->phys_info.mass = cruiser_mass;
} else {
Assert(heavy->phys_info.mass < cruiser_mass);
copy_mass = heavy->phys_info.mass;
heavy->phys_info.mass = cruiser_mass;
}
}
float coeff_restitution; // parameter controls amount of bounce
float v_rel_normal_m; // relative collision velocity in the direction of the collision normal
vec3d v_rel_parallel_m; // normalized v_rel (Va-Vb) projected onto collision surface
vec3d world_rotvel_heavy_m, world_rotvel_light_m, vel_from_rotvel_heavy_m, vel_from_rotvel_light_m, v_rel_m, vel_heavy_m, vel_light_m;
coeff_restitution = 0.1f; // relative velocity wrt normal is zero after the collision ( range 0-1 )
// find velocity of each obj at collision point
// heavy object is in cm reference frame so we don't get a v_heavy term.
if ( ship_ship_hit_info->collide_rotate ) {
// if we have collisions from rotation, the effective velocity from rotation of the large body is alreay taken account
vm_vec_zero( &vel_heavy_m );
} else {
// take account the effective velocity from rotation
vm_vec_unrotate(&world_rotvel_heavy_m, &heavy->phys_info.rotvel, &heavy->orient); // heavy's world rotvel before collision
vm_vec_crossprod(&vel_from_rotvel_heavy_m, &world_rotvel_heavy_m, &ship_ship_hit_info->r_heavy); // heavy's velocity from rotvel before collision
vel_heavy_m = vel_from_rotvel_heavy_m;
}
// if collision from rotating submodel of heavy obj, add in vel from rotvel of submodel
vec3d local_vel_from_submodel;
if (ship_ship_hit_info->submodel_rot_hit == 1) {
bool set_model = false;
polymodel *pm;
if (heavy->type == OBJ_SHIP) {
pm = model_get(heavy_sip->model_num);
} else if (heavy->type == OBJ_ASTEROID) {
pm = Asteroid_info[Asteroids[heavy->instance].asteroid_type].modelp[Asteroids[heavy->instance].asteroid_subtype];
} else if (heavy->type == OBJ_DEBRIS) {
pm = model_get(Debris[heavy->instance].model_num);
} else {
// we should have caught this already
Int3();
pm = NULL;
}
// be sure model is set
if (pm->submodel[ship_ship_hit_info->submodel_num].sii == NULL) {
set_model = true;
ship_model_start(heavy);
}
// set point on axis of rotating submodel if not already set.
if (!pm->submodel[ship_ship_hit_info->submodel_num].sii->axis_set) {
model_init_submodel_axis_pt(pm->submodel[ship_ship_hit_info->submodel_num].sii, pm->id, ship_ship_hit_info->submodel_num);
}
vec3d omega, axis, r_rot;
if (pm->submodel[ship_ship_hit_info->submodel_num].movement_axis == MOVEMENT_AXIS_X) {
axis = vmd_x_vector;
} else if (pm->submodel[ship_ship_hit_info->submodel_num].movement_axis == MOVEMENT_AXIS_Y) {
axis = vmd_y_vector;
} else if (pm->submodel[ship_ship_hit_info->submodel_num].movement_axis == MOVEMENT_AXIS_Z) {
axis = vmd_z_vector;
} else {
// must be one of these axes or submodel_rot_hit is incorrectly set
Int3();
}
// get world rotational velocity of rotating submodel
model_find_obj_dir(&omega, &axis, heavy, ship_ship_hit_info->submodel_num);
vm_vec_scale(&omega, pm->submodel[ship_ship_hit_info->submodel_num].sii->cur_turn_rate);
// world coords for r_rot
vec3d temp;
vm_vec_unrotate(&temp, &pm->submodel[ship_ship_hit_info->submodel_num].sii->pt_on_axis, &heavy->orient);
vm_vec_sub(&r_rot, &ship_ship_hit_info->hit_pos, &temp);
vm_vec_crossprod(&local_vel_from_submodel, &omega, &r_rot);
if (set_model) {
ship_model_stop(heavy);
}
} else {
// didn't collide with submodel
vm_vec_zero(&local_vel_from_submodel);
}
vm_vec_unrotate(&world_rotvel_light_m, &light->phys_info.rotvel, &light->orient); // light's world rotvel before collision
vm_vec_crossprod(&vel_from_rotvel_light_m, &world_rotvel_light_m, &ship_ship_hit_info->r_light); // light's velocity from rotvel before collision
vm_vec_add(&vel_light_m, &vel_from_rotvel_light_m, &ship_ship_hit_info->light_rel_vel);
vm_vec_sub(&v_rel_m, &vel_light_m, &vel_heavy_m);
// Add in effect of rotating submodel
vm_vec_sub2(&v_rel_m, &local_vel_from_submodel);
v_rel_normal_m = vm_vec_dotprod(&v_rel_m, &ship_ship_hit_info->collision_normal);// if less than zero, colliding contact taking place
// (v_slow - v_fast) dot (n_fast)
if (v_rel_normal_m > 0) {
// This can happen in 2 situations.
// (1) The rotational velocity is large enough to cause ships to miss. In this case, there would most likely
// have been a collision, but at a later time, so reset v_rel_normal_m
// (2) We could also have just gotten a slightly incorrect hitpos, where r dot v_rel is nearly zero.
// In this case, we know there was a collision, but slight collision and the normal is correct, so reset v_rel_normal_m
// need a normal direction. We can just take the -v_light normalized. v_rel_normal_m = -v_rel_normal_m;
nprintf(("Physics", "Frame %i reset v_rel_normal_m %f Edge %i\n", Framecount, v_rel_normal_m, ship_ship_hit_info->edge_hit));
v_rel_normal_m = -v_rel_normal_m;
}
//Maybe treat the current collision as a landing
//Init values just to be safe
vec3d light_local_vel(ship_ship_hit_info->light_rel_vel);
float light_uvec_dot_norm = 0.0f;
float light_fvec_dot_norm = 0.0f;
float light_rvec_dot_norm = 0.0f;
bool subsys_landing_allowed = light->type == OBJ_SHIP && heavy->type == OBJ_SHIP && check_subsystem_landing_allowed(heavy_sip, ship_ship_hit_info);
if (subsys_landing_allowed) {
vm_vec_rotate(&light_local_vel, &ship_ship_hit_info->light_rel_vel, &light->orient);
light_uvec_dot_norm = vm_vec_dot(&ship_ship_hit_info->collision_normal, &light->orient.vec.uvec);
light_fvec_dot_norm = vm_vec_dot(&ship_ship_hit_info->collision_normal, &light->orient.vec.fvec);
light_rvec_dot_norm = vm_vec_dot(&ship_ship_hit_info->collision_normal, &light->orient.vec.rvec);
}
if (subsys_landing_allowed &&
light_local_vel.xyz.z < light_sip->collision_physics.landing_max_z &&
light_local_vel.xyz.z > light_sip->collision_physics.landing_min_z &&
light_local_vel.xyz.y > light_sip->collision_physics.landing_min_y &&
fl_abs(light_local_vel.xyz.x) < light_sip->collision_physics.landing_max_x &&
light_uvec_dot_norm > 0 &&
light_fvec_dot_norm < light_sip->collision_physics.landing_max_angle &&
light_fvec_dot_norm > light_sip->collision_physics.landing_min_angle &&
fl_abs(light_rvec_dot_norm) < light_sip->collision_physics.landing_max_rot_angle)
{
ship_ship_hit_info->is_landing = true;
}
vec3d rotational_impulse_heavy, rotational_impulse_light, delta_rotvel_heavy, delta_rotvel_light;
vec3d delta_vel_from_delta_rotvel_heavy, delta_vel_from_delta_rotvel_light, impulse;
float impulse_mag, heavy_denom, light_denom;
matrix heavy_I_inv, light_I_inv;
// include a frictional collision impulse F parallel to the collision plane
// F = I * sin (collision_normal, normalized v_rel_m) [sin is ratio of v_rel_parallel_m to v_rel_m]
// note: (-) sign is needed to account for the direction of the v_rel_parallel_m
float collision_speed_parallel;
float parallel_mag;
impulse = ship_ship_hit_info->collision_normal;
vm_vec_projection_onto_plane(&v_rel_parallel_m, &v_rel_m, &ship_ship_hit_info->collision_normal);
collision_speed_parallel = vm_vec_normalize_safe(&v_rel_parallel_m);
float friction = (light->type == OBJ_SHIP) ? light_sip->collision_physics.friction : COLLISION_FRICTION_FACTOR;
parallel_mag = float(-friction) * collision_speed_parallel / vm_vec_mag(&v_rel_m);
vm_vec_scale_add2(&impulse, &v_rel_parallel_m, parallel_mag);
// calculate the effect on the velocity of the collison point per unit impulse
// first find the effect thru change in rotvel
// then find the change in the cm vel
if (heavy == Player_obj) {
vm_vec_zero( &delta_rotvel_heavy );
heavy_denom = 1.0f / heavy->phys_info.mass;
} else {
vm_vec_crossprod(&rotational_impulse_heavy, &ship_ship_hit_info->r_heavy, &impulse);
get_I_inv(&heavy_I_inv, &heavy->phys_info.I_body_inv, &heavy->orient);
vm_vec_rotate(&delta_rotvel_heavy, &rotational_impulse_heavy, &heavy_I_inv);
float rotation_factor = (heavy->type == OBJ_SHIP) ? heavy_sip->collision_physics.rotation_factor : COLLISION_ROTATION_FACTOR;
vm_vec_scale(&delta_rotvel_heavy, rotation_factor); // hack decrease rotation (delta_rotvel)
vm_vec_crossprod(&delta_vel_from_delta_rotvel_heavy, &delta_rotvel_heavy , &ship_ship_hit_info->r_heavy);
heavy_denom = vm_vec_dotprod(&delta_vel_from_delta_rotvel_heavy, &ship_ship_hit_info->collision_normal);
if (heavy_denom < 0) {
// sanity check
heavy_denom = 0.0f;
}
heavy_denom += 1.0f / heavy->phys_info.mass;
}
// calculate the effect on the velocity of the collison point per unit impulse
// first find the effect thru change in rotvel
// then find the change in the cm vel
// SUSHI: If on a landing surface, use the same shortcut the player gets
// This is a bit of a hack, but gets around some nasty unpredictable collision behavior
// when trying to do AI landings for certain ships
if (light == Player_obj || subsys_landing_allowed) {
vm_vec_zero( &delta_rotvel_light );
light_denom = 1.0f / light->phys_info.mass;
} else {
vm_vec_crossprod(&rotational_impulse_light, &ship_ship_hit_info->r_light, &impulse);
get_I_inv(&light_I_inv, &light->phys_info.I_body_inv, &light->orient);
vm_vec_rotate(&delta_rotvel_light, &rotational_impulse_light, &light_I_inv);
float rotation_factor = (light->type == OBJ_SHIP) ? light_sip->collision_physics.rotation_factor : COLLISION_ROTATION_FACTOR;
vm_vec_scale(&delta_rotvel_light, rotation_factor); // hack decrease rotation (delta_rotvel)
vm_vec_crossprod(&delta_vel_from_delta_rotvel_light, &delta_rotvel_light, &ship_ship_hit_info->r_light);
light_denom = vm_vec_dotprod(&delta_vel_from_delta_rotvel_light, &ship_ship_hit_info->collision_normal);
if (light_denom < 0) {
// sanity check
light_denom = 0.0f;
}
light_denom += 1.0f / light->phys_info.mass;
}
// calculate the necessary impulse to achieved the desired relative velocity after the collision
// update damage info in mc
impulse_mag = -(1.0f + coeff_restitution)*v_rel_normal_m / (heavy_denom + light_denom);
ship_ship_hit_info->impulse = impulse_mag;
if (impulse_mag < 0) {
nprintf(("Physics", "negative impulse mag -- Get Dave A if not Descent Physics\n"));
impulse_mag = -impulse_mag;
}
// update the physics info structs for heavy and light objects
// since we have already calculated delta rotvel for heavy and light in world coords
// physics should not have to recalculate this, just change into body coords (done in collide_whack)
vm_vec_scale(&impulse, impulse_mag);
vm_vec_scale(&delta_rotvel_light, impulse_mag);
physics_collide_whack(&impulse, &delta_rotvel_light, &light->phys_info, &light->orient, ship_ship_hit_info->is_landing);
vm_vec_negate(&impulse);
vm_vec_scale(&delta_rotvel_heavy, -impulse_mag);
physics_collide_whack(&impulse, &delta_rotvel_heavy, &heavy->phys_info, &heavy->orient, true);
// If within certain bounds, we want to add some more rotation towards the "resting orientation" of the ship
// These bounds are defined separately from normal "landing" bounds so that they can be more generous:
// we can have crash landings that still re-orient the ship.
if (subsys_landing_allowed &&
light_local_vel.xyz.z < light_sip->collision_physics.reorient_max_z &&
light_local_vel.xyz.z > light_sip->collision_physics.reorient_min_z &&
light_local_vel.xyz.y > light_sip->collision_physics.reorient_min_y &&
fl_abs(light_local_vel.xyz.x) < light_sip->collision_physics.reorient_max_x &&
light_uvec_dot_norm > 0 &&
light_fvec_dot_norm < light_sip->collision_physics.reorient_max_angle &&
light_fvec_dot_norm > light_sip->collision_physics.reorient_min_angle &&
fl_abs(light_rvec_dot_norm) < light_sip->collision_physics.reorient_max_rot_angle)
{
vec3d landing_delta_rotvel;
landing_delta_rotvel.xyz.x = (light_fvec_dot_norm * light_sip->collision_physics.reorient_mult)
- light_sip->collision_physics.landing_rest_angle;
// For yaw, use the dot product between vel vector (normalized) and orientation on the xz plane
// This reduces to the following math
// We also clamp to reduce huge nose swings at low speeds
float xzVelMag = sqrt(light_local_vel.xyz.x * light_local_vel.xyz.x + light_local_vel.xyz.z * light_local_vel.xyz.z);
float xzVelDotOrient = MIN(MAX((xzVelMag > 0 ? (light_local_vel.xyz.x / xzVelMag) : 0), -0.5f), 0.5f);
landing_delta_rotvel.xyz.y = (xzVelMag > 2) ? (xzVelDotOrient * light_sip->collision_physics.reorient_mult) : 0;
landing_delta_rotvel.xyz.z = light_rvec_dot_norm * light_sip->collision_physics.reorient_mult * -1;
vm_vec_add2( &light->phys_info.rotvel, &landing_delta_rotvel );
}
// Find final positions
// We will try not to worry about the left over time in the frame
// heavy's position unchanged by collision
// light's position is heavy's position plus relative position from heavy
vm_vec_add(&light->pos, &heavy->pos, &ship_ship_hit_info->light_collision_cm_pos);
// Try to move each body back to its position just before collision occured to prevent interpenetration
// Move away in direction of light and away in direction of normal
vec3d direction_light; // direction light is moving relative to heavy
vm_vec_sub(&direction_light, &ship_ship_hit_info->light_rel_vel, &local_vel_from_submodel);
vm_vec_normalize_safe(&direction_light);
Assert( !vm_is_vec_nan(&direction_light) );
vm_vec_scale_add2(&heavy->pos, &direction_light, 0.2f * light->phys_info.mass / (heavy->phys_info.mass + light->phys_info.mass));
vm_vec_scale_add2(&heavy->pos, &ship_ship_hit_info->collision_normal, -0.1f * light->phys_info.mass / (heavy->phys_info.mass + light->phys_info.mass));
//For landings, we want minimal movement on the light ship (just enough to keep the collision detection honest)
if (ship_ship_hit_info->is_landing) {
vm_vec_scale_add2(&light->pos, &ship_ship_hit_info->collision_normal, LANDING_POS_OFFSET);
}
else {
vm_vec_scale_add2(&light->pos, &direction_light, -0.2f * heavy->phys_info.mass / (heavy->phys_info.mass + light->phys_info.mass));
vm_vec_scale_add2(&light->pos, &ship_ship_hit_info->collision_normal, 0.1f * heavy->phys_info.mass / (heavy->phys_info.mass + light->phys_info.mass));
}
// restore mass in case of special cruiser / asteroid collision
if (special_cruiser_asteroid_collision) {
if (cruiser_light) {
light->phys_info.mass = copy_mass;
} else {
heavy->phys_info.mass = copy_mass;
}
}
}
// ------------------------------------------------------------------------------------------------
// get_I_inv()
//
// input: I_inv_body => inverse moment of inertia matrix in body coordinates
// orient => orientation matrix
//
// output: I_inv => inverse moment of inertia matrix in world coordinates
// ------------------------------------------------------------------------------------------------
//
// calculates the inverse moment of inertia matrix from the body matrix and oreint matrix
//
void get_I_inv (matrix* I_inv, matrix* I_inv_body, matrix* orient)
{
matrix Mtemp1, Mtemp2;
// I_inv = (Rt)(I_inv_body)(R)
// This is opposite to what is commonly seen in books since we are rotating coordianates axes
// which is equivalent to rotating in the opposite direction (or transpose)
vm_matrix_x_matrix(&Mtemp1, I_inv_body, orient);
vm_copy_transpose_matrix(&Mtemp2, orient);
vm_matrix_x_matrix(I_inv, &Mtemp2, &Mtemp1);
}
#define PLANET_DAMAGE_SCALE 4.0f
#define PLANET_DAMAGE_RANGE 3 // If within this factor of radius, apply damage.
fix Last_planet_damage_time = 0;
extern void hud_start_text_flash(char *txt, int t, int interval);
/**
* Procss player_ship:planet damage.
* If within range of planet, apply damage to ship.
*/
void mcp_1(object *player_objp, object *planet_objp)
{
float planet_radius;
float dist;
planet_radius = planet_objp->radius;
dist = vm_vec_dist_quick(&player_objp->pos, &planet_objp->pos);
if (dist > planet_radius*PLANET_DAMAGE_RANGE)
return;
ship_apply_global_damage( player_objp, planet_objp, NULL, PLANET_DAMAGE_SCALE * flFrametime * (float)pow((planet_radius*PLANET_DAMAGE_RANGE)/dist, 3.0f) );
if ((Missiontime - Last_planet_damage_time > F1_0) || (Missiontime < Last_planet_damage_time)) {
HUD_sourced_printf(HUD_SOURCE_HIDDEN, XSTR( "Too close to planet. Taking damage!", 465));
Last_planet_damage_time = Missiontime;
snd_play_3d( &Snds[ship_get_sound(player_objp, SND_ABURN_ENGAGE)], &player_objp->pos, &View_position );
}
}
/**
* Return true if *objp is a planet, else return false.
* Hack: Just checking first six letters of name.
*/
int is_planet(object *objp)
{
return (strnicmp(Ships[objp->instance].ship_name, NOX("planet"), 6) == 0);
}
/**
* If exactly one of these is a planet and the other is a player ship, do something special.
* @return true if this was a ship:planet (or planet_ship) collision and we processed it. Else return false.
*/
int maybe_collide_planet (object *obj1, object *obj2)
{
ship_info *sip1, *sip2;
sip1 = &Ship_info[Ships[obj1->instance].ship_info_index];
sip2 = &Ship_info[Ships[obj2->instance].ship_info_index];
if (sip1->flags & SIF_PLAYER_SHIP) {
if (is_planet(obj2)) {
mcp_1(obj1, obj2);
return 1;
}
} else if (sip2->flags & SIF_PLAYER_SHIP) {
if (is_planet(obj1)) {
mcp_1(obj2, obj1);
return 1;
}
}
return 0;
}
/**
* Given a global point and an object, get the quadrant number the point belongs to.
*/
int get_ship_quadrant_from_global(vec3d *global_pos, object *objp)
{
vec3d tpos;
vec3d rotpos;
vm_vec_sub(&tpos, global_pos, &objp->pos);
vm_vec_rotate(&rotpos, &tpos, &objp->orient);
return get_quadrant(&rotpos);
}
#define MIN_REL_SPEED_FOR_LOUD_COLLISION 50 // relative speed of two colliding objects at which we play the "loud" collide sound
void collide_ship_ship_sounds_init()
{
Player_collide_sound = -1;
AI_collide_sound = -1;
Player_collide_shield_sound = -1;
AI_collide_shield_sound = -1;
}
/**
* Determine what sound to play when two ships collide
*/
void collide_ship_ship_do_sound(vec3d *world_hit_pos, object *A, object *B, int player_involved)
{
vec3d rel_vel;
float rel_speed;
vm_vec_sub(&rel_vel, &A->phys_info.desired_vel, &B->phys_info.desired_vel);
rel_speed = vm_vec_mag_quick(&rel_vel);
if ( rel_speed > MIN_REL_SPEED_FOR_LOUD_COLLISION ) {
snd_play_3d( &Snds[SND_SHIP_SHIP_HEAVY], world_hit_pos, &View_position );
} else {
if ( player_involved ) {
if ( !snd_is_playing(Player_collide_sound) ) {
Player_collide_sound = snd_play_3d( &Snds[SND_SHIP_SHIP_LIGHT], world_hit_pos, &View_position );
}
} else {
if ( !snd_is_playing(AI_collide_sound) ) {
AI_collide_sound = snd_play_3d( &Snds[SND_SHIP_SHIP_LIGHT], world_hit_pos, &View_position );
}
}
}
// maybe play a "shield" collision sound overlay if appropriate
if ( (shield_get_strength(A) > 5) || (shield_get_strength(B) > 5) ) {
if ( player_involved ) {
if ( !snd_is_playing(Player_collide_sound) ) {
Player_collide_shield_sound = snd_play_3d( &Snds[SND_SHIP_SHIP_SHIELD], world_hit_pos, &View_position );
}
} else {
if ( !snd_is_playing(Player_collide_sound) ) {
AI_collide_shield_sound = snd_play_3d( &Snds[SND_SHIP_SHIP_SHIELD], world_hit_pos, &View_position );
}
}
}
}
/**
* obj1 and obj2 collided.
* If different teams, kamikaze bit set and other ship is large, auto-explode!
*/
void do_kamikaze_crash(object *obj1, object *obj2)
{
ai_info *aip1, *aip2;
ship *ship1, *ship2;
ship1 = &Ships[obj1->instance];
ship2 = &Ships[obj2->instance];
aip1 = &Ai_info[ship1->ai_index];
aip2 = &Ai_info[ship2->ai_index];
if (ship1->team != ship2->team) {
if (aip1->ai_flags & AIF_KAMIKAZE) {
if (Ship_info[ship2->ship_info_index].flags & (SIF_BIG_SHIP | SIF_HUGE_SHIP)) {
obj1->hull_strength = KAMIKAZE_HULL_ON_DEATH;
shield_set_strength(obj1, 0.0f);
}
} if (aip2->ai_flags & AIF_KAMIKAZE) {
if (Ship_info[ship1->ship_info_index].flags & (SIF_BIG_SHIP | SIF_HUGE_SHIP)) {
obj2->hull_strength = KAMIKAZE_HULL_ON_DEATH;
shield_set_strength(obj2, 0.0f);
}
}
}
}
/**
* Response when hit by fast moving cap ship
*/
void maybe_push_little_ship_from_fast_big_ship(object *big_obj, object *small_obj, float impulse, vec3d *normal)
{
// Move player out of the way of a BIG|HUGE ship warping in or out
int big_class = Ship_info[Ships[big_obj->instance].ship_info_index].class_type;
int small_class = Ship_info[Ships[small_obj->instance].ship_info_index].class_type;
if (big_class > -1 && Ship_types[big_class].ship_bools & STI_SHIP_WARP_PUSHES) {
if (small_class > -1 && Ship_types[small_class].ship_bools & STI_SHIP_WARP_PUSHABLE) {
float big_speed = vm_vec_mag_quick(&big_obj->phys_info.vel);
if (big_speed > 3*big_obj->phys_info.max_vel.xyz.z) {
// push player away in direction perp to forward of big ship
// get perp vec
vec3d temp, perp;
vm_vec_sub(&temp, &small_obj->pos, &big_obj->pos);
vm_vec_scale_add(&perp, &temp, &big_obj->orient.vec.fvec, -vm_vec_dotprod(&temp, &big_obj->orient.vec.fvec));
vm_vec_normalize_quick(&perp);
// don't drive into sfc we just collided with
if (vm_vec_dotprod(&perp, normal) < 0) {
vm_vec_negate(&perp);
}
// get magnitude of added perp vel
float added_perp_vel_mag = impulse / small_obj->phys_info.mass;
// add to vel and ramp vel
vm_vec_scale_add2(&small_obj->phys_info.vel, &perp, added_perp_vel_mag);
vm_vec_rotate(&small_obj->phys_info.prev_ramp_vel, &small_obj->phys_info.vel, &small_obj->orient);
}
}
}
}
/**
* Checks ship-ship collisions.
* @return 1 if all future collisions between these can be ignored because pair->a or pair->b aren't ships
* @return Otherwise always returns 0, since two ships can always collide unless one (1) dies or (2) warps out.
*/
int collide_ship_ship( obj_pair * pair )
{
int player_involved;
float dist;
object *A = pair->a;
object *B = pair->b;
if ( A->type == OBJ_WAYPOINT ) return 1;
if ( B->type == OBJ_WAYPOINT ) return 1;
Assert( A->type == OBJ_SHIP );
Assert( B->type == OBJ_SHIP );
if (reject_due_collision_groups(A,B))
return 0;
// If the player is one of the two colliding ships, flag this... it is used in
// several places this function.
if ( A == Player_obj || B == Player_obj ) {
player_involved = 1;
} else {
player_involved = 0;
}
// Don't check collisions for warping out player if past stage 1.
if ( player_involved && (Player->control_mode > PCM_WARPOUT_STAGE1) ) {
return 0;
}
dist = vm_vec_dist( &A->pos, &B->pos );
// If one of these is a planet, do special stuff.
if (maybe_collide_planet(A, B))
return 0;
if ( dist < A->radius + B->radius ) {
int hit;
object *HeavyOne, *LightOne;
// if two objects have the same mass, make the one with the larger pointer address the HeavyOne.
if ( fl_abs(A->phys_info.mass - B->phys_info.mass) < 1 ) {
if (A > B) {
HeavyOne = A;
LightOne = B;
} else {
HeavyOne = B;
LightOne = A;
}
} else {
if (A->phys_info.mass > B->phys_info.mass) {
HeavyOne = A;
LightOne = B;
} else {
HeavyOne = B;
LightOne = A;
}
}
ship_info *light_sip = &Ship_info[Ships[LightOne->instance].ship_info_index];
collision_info_struct ship_ship_hit_info;
init_collision_info_struct(&ship_ship_hit_info);
ship_ship_hit_info.heavy = HeavyOne; // heavy object, generally slower moving
ship_ship_hit_info.light = LightOne; // light object, generally faster moving
vec3d world_hit_pos;
hit = ship_ship_check_collision(&ship_ship_hit_info, &world_hit_pos);
pair->next_check_time = timestamp(0);
if ( hit )
{
Script_system.SetHookObjects(4, "Ship", A, "ShipB", B, "Self", A, "Object", B);
bool a_override = Script_system.IsConditionOverride(CHA_COLLIDESHIP, A);
//Yes this should be reversed.
Script_system.SetHookObjects(4, "Ship", B, "ShipB", A, "Self", B, "Object", A);
bool b_override = Script_system.IsConditionOverride(CHA_COLLIDESHIP, B);
if(!a_override && !b_override)
{
float damage;
if ( player_involved && (Player->control_mode == PCM_WARPOUT_STAGE1) ) {
gameseq_post_event( GS_EVENT_PLAYER_WARPOUT_STOP );
HUD_printf(XSTR( "Warpout sequence aborted.", 466));
}
damage = 0.005f * ship_ship_hit_info.impulse; // Cut collision-based damage in half.
// Decrease heavy damage by 2x.
if (damage > 5.0f){
damage = 5.0f + (damage - 5.0f)/2.0f;
}
do_kamikaze_crash(A, B);
if (ship_ship_hit_info.impulse > 0) {
float q;
q = vm_vec_dist_quick(&A->pos, &B->pos) / (A->radius + B->radius);
//Only flash the "Collision" text if not landing
if ( player_involved && !ship_ship_hit_info.is_landing) {
hud_start_text_flash(XSTR("Collision", 1431), 2000);
}
}
//If this is a landing, play a different sound
if (ship_ship_hit_info.is_landing) {
if (vm_vec_mag(&ship_ship_hit_info.light_rel_vel) > MIN_LANDING_SOUND_VEL) {
if ( player_involved ) {
if ( !snd_is_playing(Player_collide_sound) ) {
Player_collide_sound = snd_play_3d( &Snds[light_sip->collision_physics.landing_sound_idx], &world_hit_pos, &View_position );
}
} else {
if ( !snd_is_playing(AI_collide_sound) ) {
AI_collide_sound = snd_play_3d( &Snds[light_sip->collision_physics.landing_sound_idx], &world_hit_pos, &View_position );
}
}
}
}
else {
collide_ship_ship_do_sound(&world_hit_pos, A, B, player_involved);
}
// check if we should do force feedback stuff
if (player_involved && (ship_ship_hit_info.impulse > 0)) {
float scaler;
vec3d v;
scaler = -ship_ship_hit_info.impulse / Player_obj->phys_info.mass * 300;
vm_vec_copy_normalize(&v, &world_hit_pos);
joy_ff_play_vector_effect(&v, scaler);
}
#ifndef NDEBUG
if ( !Collide_friendly ) {
if ( Ships[A->instance].team == Ships[B->instance].team ) {
vec3d collision_vec, right_angle_vec;
vm_vec_normalized_dir(&collision_vec, &ship_ship_hit_info.hit_pos, &A->pos);
if (vm_vec_dot(&collision_vec, &A->orient.vec.fvec) > 0.999f){
right_angle_vec = A->orient.vec.rvec;
} else {
vm_vec_cross(&right_angle_vec, &A->orient.vec.uvec, &collision_vec);
}
vm_vec_scale_add2( &A->phys_info.vel, &right_angle_vec, +2.0f);
vm_vec_scale_add2( &B->phys_info.vel, &right_angle_vec, -2.0f);
return 0;
}
}
#endif
//Only do damage if not a landing
if (!ship_ship_hit_info.is_landing) {
// Scale damage based on skill level for player.
if ((LightOne->flags & OF_PLAYER_SHIP) || (HeavyOne->flags & OF_PLAYER_SHIP)) {
damage *= (float) (Game_skill_level*Game_skill_level+1)/(NUM_SKILL_LEVELS+1);
} else if (Ships[LightOne->instance].team == Ships[HeavyOne->instance].team) {
// Decrease damage if non-player ships and not large.
// Looks dumb when fighters are taking damage from bumping into each other.
if ((LightOne->radius < 50.0f) && (HeavyOne->radius <50.0f)) {
damage /= 4.0f;
}
}
float dam2 = (100.0f * damage/LightOne->phys_info.mass);
int quadrant_num = get_ship_quadrant_from_global(&world_hit_pos, ship_ship_hit_info.heavy);
if ((ship_ship_hit_info.heavy->flags & OF_NO_SHIELDS) || !ship_is_shield_up(ship_ship_hit_info.heavy, quadrant_num) ) {
quadrant_num = -1;
}
ship_apply_local_damage(ship_ship_hit_info.heavy, ship_ship_hit_info.light, &world_hit_pos, 100.0f * damage/HeavyOne->phys_info.mass, quadrant_num, CREATE_SPARKS, ship_ship_hit_info.submodel_num, &ship_ship_hit_info.collision_normal);
hud_shield_quadrant_hit(ship_ship_hit_info.heavy, quadrant_num);
// don't draw sparks (using sphere hitpos)
ship_apply_local_damage(ship_ship_hit_info.light, ship_ship_hit_info.heavy, &world_hit_pos, dam2, MISS_SHIELDS, NO_SPARKS, -1, &ship_ship_hit_info.collision_normal);
hud_shield_quadrant_hit(ship_ship_hit_info.light, quadrant_num);
maybe_push_little_ship_from_fast_big_ship(ship_ship_hit_info.heavy, ship_ship_hit_info.light, ship_ship_hit_info.impulse, &ship_ship_hit_info.collision_normal);
}
}
if(!(b_override && !a_override))
{
Script_system.SetHookObjects(4, "Ship", A, "ShipB", B, "Self", A, "Object", B);
Script_system.RunCondition(CHA_COLLIDESHIP, '\0', NULL, A);
}
if((b_override && !a_override) || (!b_override && !a_override))
{
//Yes this should be reversed.
Script_system.SetHookObjects(4, "Ship", B, "ShipB", A, "Self", B, "Object", A);
Script_system.RunCondition(CHA_COLLIDESHIP, '\0', NULL, B);
}
Script_system.RemHookVars(4, "Ship", "ShipB", "Self", "Object");
return 0;
}
} else {
// estimate earliest time at which pair can hit
// cap ships warping in/out can exceed ship's expected velocity
// if ship is warping in, in stage 1, its velocity is 0, so make ship try to collide next frame
int sif_a_flags, sif_b_flags;
sif_a_flags = Ship_info[Ships[A->instance].ship_info_index].flags;
sif_b_flags = Ship_info[Ships[B->instance].ship_info_index].flags;
// if ship is huge and warping in or out
if ( ((Ships[A->instance].flags & SF_ARRIVING_STAGE_1) && (sif_a_flags & (SIF_HUGE_SHIP)))
|| ((Ships[B->instance].flags & SF_ARRIVING_STAGE_1) && (sif_b_flags & (SIF_HUGE_SHIP))) ) {
pair->next_check_time = timestamp(0); // check next time
return 0;
}
// get max of (1) max_vel.z, (2) 10, (3) afterburner_max_vel.z, (4) vel.z (for warping in ships exceeding expected max vel)
float shipA_max_speed, shipB_max_speed, time;
// get shipA max speed
if (ship_is_beginning_warpout_speedup(A)) {
shipA_max_speed = MAX(ship_get_max_speed(&Ships[A->instance]), ship_get_warpout_speed(A));
} else {
shipA_max_speed = ship_get_max_speed(&Ships[A->instance]);
}
// Maybe warping in or finished warping in with excessive speed
shipA_max_speed = MAX(shipA_max_speed, vm_vec_mag(&A->phys_info.vel));
shipA_max_speed = MAX(shipA_max_speed, 10.0f);
// get shipB max speed
if (ship_is_beginning_warpout_speedup(B)) {
shipB_max_speed = MAX(ship_get_max_speed(&Ships[B->instance]), ship_get_warpout_speed(B));
} else {
shipB_max_speed = ship_get_max_speed(&Ships[B->instance]);
}
// Maybe warping in or finished warping in with excessive speed
shipB_max_speed = MAX(shipB_max_speed, vm_vec_mag(&B->phys_info.vel));
shipB_max_speed = MAX(shipB_max_speed, 10.0f);
time = 1000.0f * (dist - A->radius - B->radius) / (shipA_max_speed + shipB_max_speed);
time -= 200.0f; // allow one frame slow frame at ~5 fps
if (time > 0) {
pair->next_check_time = timestamp( fl2i(time) );
} else {
pair->next_check_time = timestamp(0); // check next time
}
}
return 0;
}
void collect_ship_ship_physics_info(object *heavy, object *light, mc_info *mc_info, collision_info_struct *ship_ship_hit_info)
{
// slower moving object [A] is checked at its final position (polygon and position is found on obj)
// faster moving object [B] is reduced to a point and a ray is drawn from its last_pos to pos
// collision code returns hit position and normal on [A]
// estimate location on B that contacts A
// first find orientation of B relative to the normal it collides against.
// then find an approx hit location using the position hit on the bounding box
vec3d *r_heavy = &ship_ship_hit_info->r_heavy;
vec3d *r_light = &ship_ship_hit_info->r_light;
vec3d *heavy_collide_cm_pos = &ship_ship_hit_info->heavy_collision_cm_pos;
vec3d *light_collide_cm_pos = &ship_ship_hit_info->light_collision_cm_pos;
float core_rad = model_get_core_radius(Ship_info[Ships[light->instance].ship_info_index].model_num);
// get info needed for ship_ship_collision_physics
Assert(mc_info->hit_dist > 0);
// get light_collide_cm_pos
if ( !ship_ship_hit_info->submodel_rot_hit ) {
vec3d displacement;
vm_vec_sub(&displacement, mc_info->p1, mc_info->p0);
*light_collide_cm_pos = *mc_info->p0;
vm_vec_scale_add2(light_collide_cm_pos, &displacement, ship_ship_hit_info->hit_time);
}
// get r_light
vm_vec_sub(r_light, &ship_ship_hit_info->hit_pos, light_collide_cm_pos);
float mag = float(fabs(vm_vec_mag(r_light) - core_rad));
if (mag > 0.1) {
nprintf(("Physics", "Framecount: %i |r_light - core_rad| > 0.1)\n", Framecount));
}
if (ship_ship_hit_info->edge_hit) {
// For an edge hit, just take the closest valid plane normal as the collision normal
vm_vec_copy_normalize(&ship_ship_hit_info->collision_normal, r_light);
vm_vec_negate(&ship_ship_hit_info->collision_normal);
}
// r dot n may not be negative if hit by moving model parts.
float dot = vm_vec_dotprod( r_light, &ship_ship_hit_info->collision_normal );
if ( dot > 0 )
{
nprintf(("Physics", "Framecount: %i r dot normal > 0\n", Framecount, dot));
}
vm_vec_zero(heavy_collide_cm_pos);
float q = vm_vec_dist(heavy_collide_cm_pos, light_collide_cm_pos) / (heavy->radius + core_rad);
if (q > 1.0f) {
nprintf(("Physics", "Warning: q = %f. Supposed to be <= 1.0.\n", q));
}
*r_heavy = ship_ship_hit_info->hit_pos;
// sphere_sphere_case_handled separately
#ifdef COLLIDE_DEBUG
nprintf(("Physics", "Frame: %i %s info: last_pos: [%4.1f, %4.1f, %4.1f], collide_pos: [%4.1f, %4.1f %4.1f] vel: [%4.1f, %4.1f %4.1f]\n",
Framecount, Ships[heavy->instance].ship_name, heavy->last_pos.x, heavy->last_pos.y, heavy->last_pos.z,
heavy_collide_cm_pos.x, heavy_collide_cm_pos.y, heavy_collide_cm_pos.z,
heavy->phys_info.vel.x, heavy->phys_info.vel.y, heavy->phys_info.vel.z));
nprintf(("Physics", "Frame: %i %s info: last_pos: [%4.1f, %4.1f, %4.1f], collide_pos: [%4.1f, %4.1f, %4.1f] vel: [%4.1f, %4.1f, %4.1f]\n",
Framecount, Ships[light->instance].ship_name, light->last_pos.x, light->last_pos.y, light->last_pos.z,
light_collide_cm_pos.x, light_collide_cm_pos.y, light_collide_cm_pos.z,
light->phys_info.vel.x, light->phys_info.vel.y, light->phys_info.vel.z));
#endif
}
|